
ar
X

iv
:2

10
3.

11
02

6v
1 

 [
m

at
h.

O
C

] 
 1

9 
M

ar
 2

02
1

UNIVERSAL CONDITIONAL GRADIENT SLIDING FOR CONVEX

OPTIMIZATION∗

YUYUAN OUYANG† AND TREVOR SQUIRES‡

Abstract. In this paper, we present a first-order projection-free method, namely, the universal
conditional gradient sliding (UCGS) method, for solving ε-approximate solutions to convex differ-
entiable optimization problems. For objective functions with Hölder continuous gradients, we show
that UCGS is able to terminate with ε-solutions with at most O((MνD

1+ν
X /ε)2/(1+3ν)) gradient eval-

uations and O((MνD
1+ν
X /ε)4/(1+3ν)) linear objective optimizations, where ν ∈ (0, 1] and Mν > 0

are the exponent and constant of the Hölder condition. Furthermore, UCGS is able to perform such
computations without requiring any specific knowledge of the smoothness information ν and Mν . In
the weakly smooth case when ν ∈ (0, 1), both complexity results improve the current state-of-the-art
O((MνD

1+ν
X /ǫ)1/ν) results [19, 8] on first-order projection-free method achieved by the conditional

gradient method. Within the class of sliding-type algorithms followed from the work of [15, 13], to
the best of our knowledge, this is the first time a sliding-type algorithm is able to improve not only
the gradient complexity but also the overall complexity for computing an approximate solution. In
the smooth case when ν = 1, UCGS matches the state-of-the-art complexity result achieved by the
conditional gradient sliding method [15], but adds more features allowing for practical implementa-
tion.

Key words. Convex optimization, first-order method, conditional gradient method, conditional
gradient sliding, universal gradient method

AMS subject classifications. 90C25, 90C06, 49M37

1. Introduction. In this paper, we study first-order projection-free methods for
computing ε-approximation solutions to convex optimization problems of form

(1.1) f∗ = min
x∈X

f(x).

Here X ⊂ R
n is a high-dimensional compact convex set, f is a convex function, and

our goal is to compute an ε-solution y ∈ X such that f(y) − f∗ ≤ ε. We make the
following assumptions concerning the set X and the objective function f . Under the
Euclidean norm ‖ · ‖, we assume that X is compact with diameter

DX := max
x,y∈X

‖x− y‖ < ∞(1.2)

and that there exists Hölder exponent ν ∈ (0, 1] and constant Mν > 0 such that

(1.3) f(y) ≤ f(x) + 〈∇f(x), y − x〉 + Mν

1 + ν
‖x− y‖1+ν

, ∀x, y ∈ X.

Our problem of interest covers both smooth (ν = 1) and weakly smooth (ν ∈ (0, 1))
convex optimization problems. Specifically, any convex differentiable function whose
gradient is (ν,Mν)−Hölder continuous, namely,

‖∇f(y)−∇f(x)‖ ≤ Mν ‖y − x‖ν , ∀x, y ∈ X

∗Submitted to the editors DATE.
Funding: The authors are partially supported by the Office of Navel Research grant N00014-

20-1-2089.
†School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC

(yuyuano@clemson.edu).
‡School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC

(tsquire@clemson.edu).

1

http://arxiv.org/abs/2103.11026v1
mailto:yuyuano@clemson.edu
mailto:tsquire@clemson.edu


2 Y. OUYANG AND T. SQUIRES

satisfies (1.3).
Assuming that the projection subproblem minx∈X ‖x− y‖2 can be solved exactly

and efficiently for any y ∈ R
n, first-order projection-based methods for solving the

convex optimization problem in (1.1) has already been well studied in the literature.
The classical iteration complexity theory [18] has established that the lower complexity
bound on the number of gradient evaluations of ∇f is

(1.4) O(MνD
1+ν
X /ε)2/(1+3ν)

for computing an ε-solution. Note that the above lower complexity bound becomes the
widely known O(

√

M1D2
X/ε) lower complexity bounds for smooth convex problems

(when ν = 1). For the smooth case, there have been a large number of literature
that developed first-order methods whose performance matches the lower complexity
bounds (see, e.g., the books/monographs [2, 1, 20, 14] and references with in). There
also exist several first-order methods in the literature that are able to uniformly
achieve the lower complexity bound (1.4) for any ν ∈ [0, 1], including for example the
fast gradient method (FGM) developed in [22], the bundle-level type methods in [12],
and the fast bundle-level method in [3] (for the case when X is either a Euclidean
norm ball or Rn). Note that the methods in [22, 12, 3] are universal methods, in the
sense that they do not require any knowledge on the values of ν and Mν and are able
to achieve the complexity (1.4) with the best possible ν ∈ [0, 1] and Mν > 0. Such
uniform property is appealing since it allows the methods in [22, 12, 3] to be applied
to convex optimization problems without requiring any smoothness information, i.e.,
whether the problem is nonsmooth, smooth, or weakly smooth, while still achieve the
lower complexity bound with respect to the best smoothness information.

However, it should be noted that we may not always be able to solve the pro-
jection subproblem minx∈X ‖x − y‖2 exactly and efficiently. For example, if X is a
general polyhedron, then computing the projection with high accuracy would be chal-
lenging when the dimension n is large. Recently, there has been studies on projection-
free methods (see, e.g., [11, 10, 7]) that replaces the possibly difficult projection
subproblem minx∈X ‖x − y‖2 with the easier-to-solve linear objective subproblems
minx∈X〈c, x〉. Such methods can be traced back to [6, 16] and are known as the
Frank-Wolfe or conditional gradient methods due to their origin. For the smooth
case (ν = 1) of problem (1.1), it is shown in [11, 10, 7] that the number of gradient
evaluation of ∇f and linear objective optimization subproblems are upper bounded
by O(M1D

2
X/ε). In implementations the linear subproblems can also be solved ap-

proximately within certain accuracy while still maintain the same upper complexity
bound. Here the number of linear objective optimization subproblems can not be
improved; worse-case problem instances that requires solving at least such number of
linear objective optimization subproblems has been shown in [11, 14]. For the general
case when ν ∈ (0, 1], universal methods have been developed in [19, 8] that compute
ε-solutions with at most O((MνD

1+ν
X /ǫ)1/ν) gradient evaluation of ∇f and linear

objective optimization subproblems.
Focusing on the number of gradient evaluations of ∇f required by the afore-

mentioned projection-free methods, we can observe a significant gap with the lower
complexity bound in (1.4). For example, the number of gradient evaluations required
by the universal methods in [19, 8] is upper bounded by O(1/ε3) when ν = 1/3. This
complexity is significantly worse than the lower complexity bound in (1.4) which is of
order O(1/ε) when ν = 1/3. For the special smooth case (when ν = 1), the number
of gradient evaluations required by the methods in [11, 10, 7] are upper bounded by
O(1/ε) and is significantly worse than the O(1/

√
ε) lower complexity bound in (1.4).



UNIVERSAL CONDITIONAL GRADIENT SLIDING 3

Recently, there has been a breakthrough on closing some of the gap in the gra-
dient evaluations of ∇f between the upper and lower complexity bounds. For the
special smooth case (when ν = 1), a condition gradient sliding (CGS) method is pro-
posed in [15] that is able to compute an ε-approximate solution of problem (1.1) with
O(
√

M1D2
X/ε) gradient evaluations of ∇f and O(M1D

2
X/ε) linear objective opti-

mization subproblems. Here the number of gradient evaluations required by the CGS
method matches that in the lower complexity bound in (1.4) (with ν = 1). Also, the
number of linear objective subproblems required by the CGS method also matches
the lower bound in [11, 14]. Therefore, CGS is the first method that reaches the per-
formance limit of first-order projection-free methods for solving the special smooth
case of problem (1.1). It should be noted that the CGS method in [15] requires the
knowledge of the Lipschitz continuity constant M1 of the gradient ∇f and does not
have a termination criterion for verifying whether it has computed an ε-solution. A
backtracking linesearch version of the CGS method is proposed recently in [17], which
has the same computational complexity as in [15], while only requires an initial guess
L0 ≤ O(1)M1 and the diameter constant DX for its computation. It is also able to
terminate whenever it verifies the successful computation of an ε-solution.

None of the above literature on sliding-type algorithms discuss the weakly smooth
case when ν ∈ (0, 1) or the design of universal methods. In this paper, we propose
to close the remaining gap in the gradient evaluations of ∇f between its upper com-
plexity bounds in projection-free methods and the lower complexity bounds in (1.4).
Specifically, we propose a novel first-order projection-free method, namely the univer-
sal conditional gradient sliding (UCGS) method, that is able to compute an ε-solution
of the problem (1.1) without requiring any knowledge of the smoothness information
(ν,Mν). The framework of UCGS is built around that of the fast gradient [22] and
conditional gradient sliding [15] methods. The contributions of this paper are sum-
marized below.

First, in terms of gradient evaluations of ∇f , the total number of evaluations
required by the proposed UCGS method for computing an ε-solution is upper bounded
uniformly by O(MνD

1+ν
X /ε)2/(1+3ν) for any ν ∈ (0, 1]. Such bound matches the lower

complexity bound in (1.4). To the best of our knowledge, this is the first first-order
projection-free method that is able to achieve such gradient evaluation complexity
bound uniformly for smooth and weakly smooth convex optimization problems.

Second, the total number of linear objective subproblems required by the pro-
posed UCGS method for computing an ε-solution is upper bounded uniformly by
O(MνD

1+ν
X /ε)4/(1+3ν) for any ν ∈ (0, 1]. Comparing with the O((MνD

1+ν
X /ǫ)1/ν)

result [19, 8] in the literature, the proposed UCGS method has the same complex-
ity when ν = 1 and is significantly better for all ν ∈ (0, 1). For example, when
ν = 1/3, the UCGS method has significantly better complexity of O(1/ε2) comparing
the O(1/ε3) result in [19, 8]. Within the class of sliding-type algorithms followed from
the work of [15, 13], to the best of our knowledge, this is the first time a sliding-type
algorithm is able to improve not only the gradient complexity but also the overall
complexity for computing an approximate solution.

Third, the proposed UCGS method is able to achieve the aforementioned complex-
ity bounds without any knowledge of the smooth information (ν,Mν) of the objective
function. Therefore, it is a universal method that is able to solve weakly smooth and
smooth convex optimization problems with the best possible ν ∈ (0, 1] and Mν > 0.
Note that in the special smooth case when ν = 1, the proposed UCGS method can
be understood as an extension of the CGS method [15] with add features for prac-
tical implementation. In such case, it has the same complexity results as the CGS



4 Y. OUYANG AND T. SQUIRES

method [15] and its backtracking linesearch edition [17] in terms of both gradient
evaluations of ∇f and linear objective subproblems. However, unlike the linesearch
edition [17], by incorporating a different backtracking linesearch strategy with a novel
parameter choice, UCGS no longer require any information on the continuity constant
M1. UCGS also allows that all linear objective optimization subproblems be solved
approximately within certain accuracy while maintain the same complexity results.

This paper is organized as follows. In Section 2 we provide a generic description
of algorithms for solving problem (1.1). We discuss the relation of our generic de-
scription to the previously mentioned algorithms and perform theoretical complexity
analysis. In particular, we demonstrate the theoretical novelty of our paper on the
improvement of both the gradient and linear objective optimization complexities over
that of the conditional gradient method. In Section 3, we provide a practical version,
namely UCGS, of the generic algorithm and prove that UCGS maintains the same
complexity results. We report some preliminary numerical results in Section 4 and
provide concluding remarks and potential future works in Section 5.

2. Conditional gradient sliding method in the Hölder case. In this sec-
tion, we propose to analyze the conditional gradient (CG) and conditional gradient
sliding (CGS) method in [15] through a generic description, which we call the generic
universal gradient (GUG) method. GUG can be simply understood as a generic de-
scription of the CGS method and serves purely as a tool for our theoretical analysis
of CGS in the Hölder case. We will show that a version of GUG achieves better
gradient evaluation complexity than CG for solving problem (1.1). While CGS can
already achieve better gradient evaluation than that of CG for problems with Lip-
schitz continuous gradients, our result covers a more general case of problems with
Hölder continuous gradients. Moreover, we will also show a novel theoretical result
that GUG can also achieve better complexity on linear objective optimizations than
that of CG when the Hölder continuouity exponent ν ∈ (0, 1). Such theoretical result
is particularly interesting within the class of sliding-type algorithms followed from the
works of [15, 13]. To the best of our knowledge, this is the first time a sliding-type
algorithm is able to improve not only the gradient complexity but also the overal
complexity for computing an approximate solution.

The iterations of GUG is described in Algorithm 2.1. Let us make a few remarks
regarding Algorithm 2.1. First, in both Algorithms 2.1 and in the sequel, we refer to
the operations between increments in t as an inner iteration and that of k as an outer
iteration. To distinguish inner and outer iteration descriptions, we will use subscripts
and superscripts to denote outer and inner iteration indices, respectively. Second, the
relation (2.5) in the Approx-Subproblem procedure can be satisfied through different
algorithms and allows both projection-based and projection-free implementations. For
example, if we require ηk ≡ 0, then the Approx-Subproblem procedure solves a pro-
jection problem and the iterate xk computed by the procedure is an optimal solution
to the projection problem

(2.1) min
x∈X

φk(x) := 〈∇f(zk), x〉 +
βk

2
‖x− xk−1‖2 .

Consequently, GUG reduces to a version of Nesterov’s accelerated gradient method
(see, e.g., [21]). For our study, we will focus on a projection-free implementation of
the Approx-Subproblem procedure, namely the conditional gradient method (CGM)
procedure, described in Algorithm 2.2. Third, if βk ≡ 0, then the subproblem (2.5)
becomes a linear objection optimization and it takes exactly one inner iteration for



UNIVERSAL CONDITIONAL GRADIENT SLIDING 5

Algorithm 2.1 Generic universal gradient (GUG) method
Start: Choose tolerance ε > 0 and initial iteration x0 ∈ X. Set y0 = x0.
for k = 1, 2, . . . , N do

zk = (1− γk)yk−1 + γkxk−1(2.2)

xk = Approx-Subproblem(∇f(zk), xk−1, βk, ηk)

yk = (1− γk)yk−1 + γkxk(2.3)

end for

Output yN as the approximate solution.

procedure u+ = Approx-Subproblem(g,u, β, η)
Use any algorithm to compute an approximate solution u+ to problem

min
x∈X

φ(x) := 〈g, x〉+
β

2
‖x− u‖2(2.4)

that satisfies

(2.5) max
x∈X

〈∇φ(u+), u+ − x〉 = max
x∈X

〈g + β(u+ − u), u+ − x〉 ≤ η.

end procedure

Algorithm 2.2 Conditional gradient method (CGM) procedure for solving (2.5)

procedure u+ = CGM(g, u, β)
Initialize u0 = u.
while ut−1 does not satisfy (2.5) do

Compute vt such that

(2.6) max
x∈X

〈g + β(ut−1 − u), vt − x〉 ≤ 0

Set

ut = (1− αt)ut−1 + αtvt

end while

Output u+ = ut

end procedure

CGM to compute an optimal solution to this subproblem. Consequently, GUG reduces
to CG. Note that by the description of vt in (2.6), vt is the optimal solution to the
linear subproblem. If instead we allow the right hand side of (2.6) to be nonzero,
then we can study practical implementation variants of CG that solve the linear
objective optimization subproblem approximately (see, e.g., [7] and the references
within). However, we will focus on theoretical analysis in this section; the approximate
linear subproblem implementation will be discussed in next section. Finally, if the
parameter αt in the CGM procedure is chosen as described in (3.12) later, then CGM
is exactly CndG in [15], and GUG reduces to CGS. The key concept behind CGS,
which distinguishes it from projection-based methods and CG, is that uses the CGM
procedure with multiple inner iterations to compute an approximate solution to the
projection problem (2.1). Instead of solving an optimal solution, CGS runs several
inner iterations through the CGM procedure to compute an approximate solution xk

satisfying

〈∇f(zk) + βk(xk − xk−1), xk − x〉 ≤ ηk, ∀x ∈ X,

where βk > 0. By doing so, in the special smooth case (when ν = 1) of problem 1.1



6 Y. OUYANG AND T. SQUIRES

CGS successfully reduces the total number of outer iterations, and hence skipping
gradient evaluations, to O(1/

√
ε) from CG’s O(1/ε), while not affecting the total

number of linear objective optimizations. This feature of skipping gradient evaluations
is termed “sliding” in [15] (see also [13]). An interesting discovery we will make in this
section, is that the use of sliding also reduces the total number of inner iterations, and
consequently linear objective optimizations when the Hölder exponent ν ∈ (0, 1). To
the best of our knowledge, such discovery was not made previously in the literature
of sliding-type algorithms.

We will now analyze the performance of Algorithm 2.1 under various parameter
settings using the CGM procedures in Algorithm 2.2 to solve an approximate solution
that satisfies the requirement (2.5) in GUG. We begin by building a recurrence relation
on the outer iterates. Such recurrence provides us a tool for performing complexity
analysis on GUG.

Proposition 2.1. Suppose that γk ∈ [0, 1] for all k in Algorithm 2.1. We have

f(yk)− (1 − γk)f(yk−1)− γkf(x)

≤γkηk +
βkγk
2

(‖xk−1 − x‖2 − ‖xk − x‖2)

− βkγk
2

‖xk − xk−1‖2 +
Mνγ

1+ν
k

1 + ν
‖xk − xk−1‖1+ν

, ∀k ≥ 1, x ∈ X.

(2.7)

Specially, if ν ∈ (0, 1) and βk > 0 for all k, then

f(yk)− (1− γk)f(yk−1)− γkf(x)

≤γkηk +
βkγk
2

(‖xk−1 − x‖2 − ‖xk − x‖2) + ξk, ∀k ≥ 1, x ∈ X,
(2.8)

where

ξk :=
1− ν

2(1 + ν)
M

2
1−ν

ν

(

γk
βk

)
1+ν

1−ν

.(2.9)

Proof. From the Hölder condition (1.3) and the convexity of f(x) we have

f(yk)− (1− γk)f(yk−1)− γkf(x)

≤f(zk) + 〈∇f(zk), yk − zk〉+
Mν

1 + ν
‖yk − zk‖1+ν

− (1 − γk)(f(zk) + 〈∇f(zk), yk−1 − zk〉)− γk(f(zk) + 〈∇f(zk), x− zk〉)

=γk〈∇f(zk), xk − x〉+ Mνγ
1+ν
k

1 + ν
‖xk − xk−1‖1+ν .

Here the last equality is from the definitions of zk and yk in (2.2) and (2.3) respectively.
Noting that xk is computed from the Approx-Subproblem procedure that satisfies
(2.5), we have

〈∇f(zk), xk − x〉+ βk

2
(‖xk − xk−1‖2 + ‖xk − x‖2 − ‖xk−1 − x‖2)

=〈∇f(zk) + βk(xk − xk−1), xk − x〉 ≤ ηk, ∀x ∈ X.

Summarizing the above two relations we obtain (2.7). By Young’s inequality (applied
to the product of (βkγk/(1 + ν))(1+ν)/2)‖xk − xk−1‖1+ν and Mν(γk/βk)

(1+ν)/2(1 +
ν)−(1−ν)/2 with exponents 2/(1+ ν) and 2/(1− ν) respectively) we conclude the next
result(2.8) from (2.7).



UNIVERSAL CONDITIONAL GRADIENT SLIDING 7

In the above proposition there is a recurrence relation concerning weights (1−γk).
The following notation will be used in the sequel for analyzing the complexity of GUG:

(2.10) Γk =

{

1 k = 1

Γk−1(1 − γk) k > 1.
.

We will use the following simple lemma for analyzing the sum of recurrent terms.

Lemma 2.2. Suppose that {ak}, {bk} ⊂ R and {γk} ⊂ [0, 1] are sequences that
satisfy γ1 = 1 and

ak ≤ (1− γk)ak−1 + γkbk, ∀k ≥ 1.(2.11)

Then we have

ak ≤ Γk

k
∑

i=1

γi
Γi

bi, ∀k ≥ 1, where Γk :=

{

1 when k = 1

Γk−1(1− γk) when k > 1.
(2.12)

Proof. Dividing both sides of (2.11) by Γk we obtain a series of inequalities with
telescoping terms concerning sequence {ak/Γk}. Summing up we obtain (2.12).

We are now ready to derive results on the complexity of CG as a special case
of GUG. Theorem 2.3 below is a known complexity result of CG for problems with
Hölder continuous gradients [19, 8].

Theorem 2.3 (see also [19, 8]). Suppose that we apply GUG in Algorithm 2.1
(with Algorithm 2.2 to solve Approx-Subproblem) with parameters βk ≡ 0, ηk ≡ 0,
γk = 2/(k + 1) and α1 = 1 in Algorithm 2.2. To compute an ε-solution to problem
(1.1) with Hölder exponent ν and constant Mν , GUG requires at most Ngrad gradient
evaluations and Nlin linear objective optimizations, in which

(2.13) Nlin = Ngrad = O
(

(

MνD
1+ν
X

ε

)

1
ν

)

.

Proof. Since γk = 2/(k + 1), by (2.10) we have Γk = 2/(k(k + 1)) and hence
γk/Γk = k. Applying Proposition 2.1 and noting Lemma 2.2 with our parameter
settings, we have for any x ∈ X that

f(yN )− f(x) ≤ 2Mν

N(N + 1)(1 + ν)

N
∑

k=1

k

(

2

k + 1

)ν

‖xk − xk−1‖1+ν ≤ O
(

MνD
1+ν
X

Nν

)

.

Thus, in order to obtain an ε-solution, we require at most Ngrad outer iterations.
Moreover, noting that α1 = 1 and β = 0 in the CGM procedure, comparing (2.6) and
(2.5) we observe that CGM will always terminate after one inner iteration. Therefore,
the total number of gradient evaluations and linear optimizations must both be upper
bounded by (2.13).

As pointed in the remarks after the description of Algorithm 2.1, CG is a special
case of GUG with βk ≡ 0. Therefore, Theorem 2.3 above provides a complexity
result for the CG algorithm applied to functions with Hölder continuity exponent
ν ∈ (0, 1]. One achieves similar results to Theorem 2.3 when choosing different γk
(e.g., γk = 1/k; see, e.g., [19] for other choices of γk). It should also be noted that the
choice of ηk ≡ 0 does not affect the above analysis; indeed, with β = 0 and any η ≥ 0,



8 Y. OUYANG AND T. SQUIRES

the CGM procedure will always terminate after one inner iteration. However, as we
describe below, if β > 0, the choice of η will affect the number of inner iterations
performed by the CGM procedure before termination. The proposition below is a
known complexity result (see Theorem 2.2(c) in [15]) of CG for solving projection
problems. For completeness, we will prove it later in the next section as an immediate
consequence of Proposition 3.2.

Proposition 2.4. In the CGM procedure for computing an approximate solution
to the projection problem (2.4), if we choose αt = 2/(t+ 1), then

min
j=0,...,t

max
x∈X

〈∇φ(uj), uj − x〉 ≤ 6βD2
X

t
, ∀t ≥ 1.

Proposition 2.4 provides insight on the number of inner iterations required by the
CGM procedure in Algorithm 2.2 to solve the projection problem 2.4 approximately.
For example, if we set ηk ≥ 6βkD

2
X , then the CGM procedure always terminates

after exactly one iteration. Noting that u0 = u in CGM, we can observe that GUG
reduces to CG not only when βk ≡ 0 (as stated previously in the remarks of GUG and
after Theorem 2.3), but also when βk > 0 and ηk ≥ 6βkD

2
X . The latter observation

is important for our analysis: as described in the following theorem, for problems
with Hölder continuous exponent ν ∈ (0, 1), the latter observation will allow us to
perform a simple analysis of CG that is different from the current literature [19, 8].
Such simple analysis leads to our interesting discovery that sliding could improve the
complexity of linear objective optimizations.

Theorem 2.5 (see also [19, 8]). Assume in problem (1.1) that the Hölder expo-
nent ν ∈ (0, 1). Suppose that we apply GUG in Algorithm 2.1 (with Algorithm 2.2
to solve Approx-Subproblem) with parameters βk > 0, ηk = 6βkD

2
X , and α1 = 1 in

Algorithm 2.2. Then we have for any x ∈ X that

f(yN)− f(x)

≤ΓN

N
∑

k=1

βkγk
2Γk

(12D2
X + ‖xk−1 − x‖2 − ‖xk − x‖2) + 1

Γk

1− ν

2(1 + ν)
M

2
1−ν

ν

(

γk
βk

)
1+ν

1−ν

.

(2.14)

Specially, if we set βk = Mνγ
ν
k/D

1−ν
X and γk = 2/(k+1), to compute an ε-solution to

problem (1.1) with Hölder exponent ν and constant Mν , GUG requires at most Ngrad

gradient evaluations and Nlin linear objective optimizations, in which Nlin = Ngrad =

O
(

(

MνD
1+ν
X /ε

)
1
ν

)

.

Proof. Applying Proposition 2.1 and noting Lemma 2.2, with our choice of ηk we
have (2.14). Consequently,

f(yN )− f(x) ≤ΓN

N
∑

k=1

7βkγkD
2
X

Γk
+

1

Γk

1− ν

2(1 + ν)
M

2
1−ν

ν

(

γk
βk

)

1+ν

1−ν

, ∀x ∈ X.(2.15)

Substituting to (2.15) the values of βk, γk, and noting that Γk = 1/k from (2.10), we
have

f(yN)− f(x) ≤ O
(

MνD
1+ν
X

N2

) N
∑

k=1

k

(k + 1)ν
≤ O

(

MνD
1+ν
X

Nν

)

.



UNIVERSAL CONDITIONAL GRADIENT SLIDING 9

Thus, in order to obtain an ε-solution, we require at most Ngrad outer iterations.
Moreover, noting that α1 = 1 and η = 6βD2

X in the CGM procedure, by Proposition
2.4 we observe that the CGM procedure will always terminate after one inner iteration.
Therefore the total number of linear optimizations is upper bounded byNlin = Ngrad.

In the above theorem, we observe an imperfection by in the derivation from (2.14)
and (2.15), although we obtain the same complexity result of CG as in Theorem 2.3.
Specifically, due to the existence of the dominant term D2

X , we can only simply bound

the telescoping difference (‖xk−1 − x‖2 −‖xk − x‖2) by D2
X in to obtain (2.15). As a

consequence, even if we attempt to choose the best βk = O(Mνγ
ν
k/D

1−ν
X ) to minimize

the right hand side of (2.15), the complexity result remains to be O
(

(

MνD
1+ν
X /ε

)
1
ν

)

.

Noting that the imperfection we observe is due to the choice that ηk = 6βkD
2
X , we

may choose a smaller ηk setting to improve the complexity results, as stated in the
proposition below.

Theorem 2.6. Assume in problem (1.1) that the Hölder exponent ν ∈ (0, 1).
Suppose that we apply GUG in Algorithm 2.1 (with Algorithm 2.2 to solve Approx-
Subproblem) with parameters

βk =
Mνk

1−3ν
2

D1−ν
X

, ηk =
6βkD

2
X

k
, and γk =

2

k + 1
.

To compute an ε-solution to problem (1.1) with Hölder exponent ν and constant Mν ,
GUG requires at most Ngrad gradient evaluations and Nlin linear objective optimiza-
tions, in which

Ngrad = O
(

(

MνD
1+ν
X

ε

)

2
1+3ν

)

and Nlin = O
(

(

MνD
1+ν
X

ε

)

4
1+3ν

)

.

for any ν ∈ [0, 1).

Proof. Since γk = 2/(k + 1), we have Γk = 2/(k(k + 1)) and hence γk/Γk = k.
Applying Proposition 2.1 and noting Lemma 2.2, with our choice of parameters

f(yN )− f(x)

≤ 2

N(N + 1)

N
∑

k=1

6βkD
2
X +

kβk

2

(

‖xk−1 − x‖2 − ‖xk − x‖2
)

+
ξk
Γk

, ∀x ∈ X.

Noting that kβk is increasing, we have

N
∑

k=1

kβk

(

‖xk−1 − x‖2 − ‖xk − x‖2
)

=β1‖x0 − x‖2 +
N
∑

k=1

((k + 1)βk+1 − kβk)‖xk − x‖2 −NβN‖xN − x‖2

≤β1D
2
X +

N
∑

k=1

((k + 1)βk+1 − kβk)D
2
X = NβND2

X .

Combining the above two relations and noting our choice of βk and the description of



10 Y. OUYANG AND T. SQUIRES

ξk in (2.9) we have

f(yN)− f(x) ≤ O
(

MνD
1+ν
X

N2

)





N
∑

k=1

k
1−3ν

2 +N
3−3ν

2 +

N
∑

k=1

k
1+3ν2

2(1−ν)

(k + 1)
2ν

1−ν



(2.16)

≤O
(

MνD
1+ν
X

N
1+3ν

2

)

, ∀x ∈ X.

Thus, to obtain an ε-solution, we need at most Ngrad outer iterations, or equivalently,
at most Ngrad gradient evaluations. Also, from Proposition 2.4, if ηk = 6βkD

2
X/k,

then we will perform at most k inner iterations per outer iteration. Thus, the total
number of inner iterations and consequently linear objective optimizations is upper
bounded by

Ngrad
∑

k=1

k ≤ O(N2
grad) = O

(

(

MνD
1+ν
X

ε

)

4
1+3ν

)

.

The proof is now complete.

Note that by the choice of ηk and Proposition 2.4, Theorem 2.6 provides a com-
plexity result for a version of GUG with the sliding feature for solving problem (1.1).
Comparing Theorems 2.5 and 2.6, the key difference in the proofs is the additional 1/k
factor in ηk in Theorem 2.6. With the additional factor, the three terms at the right
hand side of (2.16) are of the same order with respect to N , resolving the imperfection
we noticed previously in (2.15) in the proof of Theorem 2.5. In doing so, we achieve
the optimal lower complexity bound of gradient evaluations (1.4) for first-order meth-
ods. Interestingly, we can discover that number of linear optimizations required in
Theorem 2.6 is also significantly reduced comparing with that in Theorem 2.5, since
4/(1 + 3ν) < 1/ν for all ν ∈ (0, 1).

It should be noted that we exclude the case ν = 1 case in Theorem 2.6 only for
convenience of our analysis, since our focus in this section is mainly the theoretical
analysis on improving the state-of-the-art complexity bounds [19, 8] when ν ∈ (0, 1).
By slightly modifying the proof of Theorem 2.6 we can also achieve the same com-
plexity results as the state-of-the-art in [15]. We will include the ν = 1 case in the
convergence analysis of practical implementation in the next section.

We conclude this section with several comments regarding the implementation of
GUG in Algorithm 2.1. Note that the sliding result shown in Theorem 2.6 requires a
parameter choice βk that assumes the knowledge of Hölder exponent ν ∈ (0, 1) and
constant Mν . Unfortunately, the knowledge of the best ν and Mν for the performance
of GUG may not be easily accessible in practice. Furthermore, the proposed Algo-
rithm 2.1 has no termination criterion for verifying whether the current approximate
solution yk is an ε-solution. Lastly, there may exist problem instances in which a
solution vt to the linear subproblem (2.6) cannot be computed exactly and instead
we can only compute an approximate solution. In the next section, we propose an
algorithm called universal conditional gradient sliding (UCGS) that utilizes a back-
tracking linesearch scheme with an implementable stopping criterion to achieve better
practical performance than Algorithm 2.1. We will also analyze its convergence under
an approximate solution to linear subproblem (2.6).

3. Practical universal conditional gradient sliding method. In this sec-
tion, we propose a practical universal conditional gradient sliding (UCGS) method



UNIVERSAL CONDITIONAL GRADIENT SLIDING 11

Algorithm 3.1 Universal conditional gradient sliding (UCGS) method
Start: Choose tolerance ε > 0 and initial iteration x0 ∈ X. Set y0 = x0.
for k = 1, 2, . . . , do

Decide Lk > 0 such that

f(yk) ≤ f(zk) + 〈∇f(zk), yk − zk〉+
Lk

2
‖yk − zk‖

2 +
ε

2
γk(3.1)

where

γk :=

{

1, k = 1

positive solution to Γk−1(1− γk) =
Lkγ2

k

k
, k > 1

(3.2)

zk := (1− γk)yk−1 + γkxk−1(3.3)

xk := ACGM(∇f(zk), xk−1, βk, ηk)(3.4)

yk := (1− γk)yk−1 + γkxk(3.5)

Γk :=
Lkγ

2
k

k
.(3.6)

Compute an approximate solution sk to the problem

min
x∈X

ℓk(x) := Γk

k
∑

i=1

γi

Γi
(f(zi) + 〈∇f(zi), x− zi〉)(3.7)

such that ℓk(sk)−minx∈X ℓk(x) ≤ εk. Terminate and output yk as an approximate solution if

f(yk)− ℓk(sk) + εk ≤ ε.(3.8)

end for

procedure u+ = ACGM(g, u, β, η)
Goal: Compute u+ such that maxx∈X〈∇φ(u+), u+ − x〉 ≤ η, where

φ(x) := 〈g, x〉+
β

2
‖x− u‖2.(3.9)

Start: Set u0 = u.
for t = 1, 2, . . . , do

Compute a δt-approximate solution vt to the problem minx∈X〈∇φ(ut−1), x〉 such that

(3.10) 〈g + β(ut−1 − u), vt〉 − min
x∈X

〈g + β(ut−1 − u), x〉 ≤ δt.

Terminate with u+ := ut−1 if

〈g + β(ut−1 − u), ut−1 − vt〉+ δt ≤ η.(3.11)

Otherwise, compute ut = (1− αt)ut−1 + αtvt.
end for

end procedure

that addresses the above issues of Algorithm 2.1. The proposed UCGS algorithm is
described in Algorithm 3.1.

Let us make a few remarks regarding Algorithm 3.1. First, the approximate
conditional gradient method (ACGM) procedure in Algorithm 3.1 is a generalization
of the CGM procedure (Algorithm 2.2) discussed in the previous section. Specifically,
whenever δt ≡ 0, ACGM and CGM are equivalent. Note also that the parameter αt

can be computed through an exact linesearch, namely,

αt := min

{

1,
〈g − β(u − ut−1), ut−1 − vt〉

β ‖vt − ut−1‖2

}

.(3.12)



12 Y. OUYANG AND T. SQUIRES

It is easy to observe that the above αt is the optimal solution to the exact linesearch
problem minα∈[0,1] φ((1 − α)ut−1 + αvt). Second, if the objective function f(x) in
problem (1.1) has Lipschitz continuous gradient (so ν = 1) with Lipschitz constant
M1, then UCGS can be understood as extension of CGS with added features for
practical implementation. The new features include a backtracking linesearch strategy
that computes adaptive estimates Lk for the Lipschitz constant M1, the possibility
of computing only approximate solutions to linear subproblems, and a termination
criterion for verifying whether an approximate solution to problem (1.1) has been
computed. Third, the choice of γk and Γk in (3.6) and (3.2) implies that

(3.13) Γk =

{

1, k = 1

Γk−1(1 − γk), k > 1
.

Furthermore, it can be shown that for k > 1, the solution to (3.2) is given by

γk =
2
√

kΓk−1
√

4Lk + kΓk−1 +
√

kΓk−1

.

Observe that γk ∈ (0, 1). Consequently, the recursively described approximate so-
lution yk is the convex combination of x1, . . . , xk. Also the point zk for gradient
evaluation is a convex combination of x1, . . . , xk−1. Such recursive description first
appeared in Nesterov’s seminal accelerated gradient algorithm (see, e.g., [21]) and is
also used in the CGS algorithm [15] and the universal gradient algorithms studied in
[22]. However, our choice of γk is novel and is different from the ones in [22, 15, 21].
In fact, to our knowledge, none of the settings of γk in [22, 21, 15] are suitable for
CGS-type algorithms with adaptive Lk. In the only previous work [17] that success-
fully developed a linesearch scheme for CGS, γk needs to satisfy a more sophisticated
cubic equation and Lk needs to be monotone increasing. As we will describe below,
such monotonicity restriction on Lk is removed in our proposed UCGS method.

A few remarks on the practical implementation of Algorithm 3.1 are also in place.
First, Algorithm 3.1 proposes that we find Lk > 0 such that (3.1) is satisfied. The
condition (3.1) originated from the framework of inexact oracle in [5] and is also
used in [22]. We proposed to search for such Lk through a backtracking linesearch
strategy. In particular, we initialize with any L0 ∈ R and choose L1 = 2iL0 where
i is the smallest integer such that (3.1) is satisfied. At the start of the k-th outer
iteration where k > 1, we set Lk = Lk−1/2 and assess the validity of Lk. If it does
not satisfy (3.1), we keep backtracking and replacing Lk to 2Lk until (3.1) is satisfies.
Through this backtracking linesearch strategy, we ensure that our choice of Lk is
adaptive and that performance is independent of the choice of L0. Previous literature
[17] on backtracking linesearch strategy of CGS require monotonicity of Lk and may
suffer from a poorly chosen L0. Second, our termination criterion is based on (3.8).
We can observe immediately that if the parameter εk ≡ 0, i.e., sk is the exact solution
to problem (3.7), then when (3.8) is satisfied, yk will be ε-approximation solution to
problem (1.1). To see this, note from (3.13) that

(3.14) Γk

k
∑

i=1

γi
Γi

= 1

and consequently

f(yk)− f∗ ≤ f(yk)−min
x∈X

ℓk(x) = f(yk)− ℓk(sk).



UNIVERSAL CONDITIONAL GRADIENT SLIDING 13

Such termination criterion also appeared in the previous literature (see, e.g., [22, 17]).
For the case when εk > 0, we will show later in Theorem 3.7 that allowing approximate
solution sk with properly chosen accuracy εk will not affect the complexity results of
UCGS.

We present convergence analysis for the UCGS algorithm proposed above, be-
ginning with some results on the inner iteration complexity. The following lemma
resembles a combination of the proofs of Theorem 2.2(c) in [15] and Theorem 5.2 in
[7] on the analysis of conditional gradient method with approximate linear objective
optimization subproblems for solving projection problems.

Lemma 3.1. Suppose that {λt} ∈ [0, 1] is any predetermined sequence satisfying
λ1 = 1. In the ACGM procedure, if αt is chosen such that

φ(ut) ≤ φ((1 − λt)ut−1 + λtvt), ∀t ≥ 1,(3.15)

then we have

t
∑

j=2

λj

Λj
max
x∈X

〈∇φ(uj−1), uj−1 − x〉 ≤



δ1 +

t
∑

j=2

λj

Λj

(

δj + Λj−1

j−1
∑

i=1

λi

Λi
δi

)





+
βD2

X

2



1 +

t
∑

j=2

λj

Λj

(

λj + Λj−1

j−1
∑

i=1

(λi)2

Λi

)





for all t ≥ 2, where

Λt :=

{

1 when t = 1

Λt−1(1− λt) when t > 1.
(3.16)

Proof. Observing that the function φ(x) in (3.9) is a strongly convex function
with Lipschitz continuous (with constant β) gradient, using the assumption (3.15),
and noting the definition of approximate solution vt in (3.10), we have

φ(ut)− (1− λt)φ(ut−1)− λt(φ(ut−1) + 〈∇φ(ut−1), x− ut−1〉)
≤φ((1 − λt)ut−1 + λtvt)− φ(ut−1)− λt〈∇φ(ut−1), x− ut−1〉

≤λt〈∇φ(ut−1), vt − ut−1〉+ β(λt)2

2

∥

∥vt − ut−1
∥

∥

2 − λt〈∇φ(ut−1), x− ut−1〉

=λt〈∇φ(ut−1), vt − x〉+ β(λt)2

2

∥

∥vt − ut−1
∥

∥

2

≤λtδt +
βD2

X(λt)2

2
, ∀x ∈ X, t ≥ 1.

(3.17)



14 Y. OUYANG AND T. SQUIRES

Defining x∗ := argminx∈X φ(x), from the above relation we have for any t ≥ 2 that

t
∑

j=2

λj

Λj
max
x∈X

〈∇φ(uj−1), uj−1 − x〉

≤
t
∑

j=2

1

Λj
[φ(uj−1)− φ(x∗)]− 1

Λj
[φ(uj)− φ(x∗)] +

λj

Λj
δj +

βD2
X(λj)2

2Λj

=[φ(u1)− φ(x∗)]− 1

Λt
[φ(ut)− φ(x∗)]

+
t
∑

j=2

λj

Λj
[φ(uj−1)− φ(x∗)] +

λj

Λj
δj +

βD2
X(λj)2

2Λj

≤[φ(u1)− φ(x∗)] +

t
∑

j=2

λj

Λj
[φ(uj−1)− φ(x∗)] +

λj

Λj
δj +

βD2
X(λj)2

2Λj
.

(3.18)

Here in the equality we use the following observations from the definition of Λt in
(3.16): 1/Λ1 = 1 and 1/Λj = 1/Λj−1 + λj/Λj for all j ≥ 2,

To finish the proof it suffices to bound φ(uj−1)− φ(x∗) for any j ≥ 2. Observing
that φ(x) in (3.9) is strongly convex and quadratic with

β

2

∥

∥x− ut−1
∥

∥

2
= φ(x) − (φ(ut−1) + 〈∇φ(ut−1), x− ut−1〉), ∀x ∈ X, t ≥ 1,

we have from (3.17) (with x = x∗) that

[φ(ut)− φ(x∗)]− (1− λt)[φ(ut−1)− φ(x∗)] ≤ λtδt +
βD2

X(λt)2

2
− βλt

2

∥

∥x∗ − ut−1
∥

∥

2
.

Applying Lemma 2.2 to the above recurrence relation and ignoring negative terms at
the right hand side, we have

φ(ut)− φ(x∗) ≤ Λt
t
∑

i=1

λi

Λi
δi +

βD2
X(λi)2

2Λi
, ∀t ≥ 1.

We conclude the lemma immediately by applying the above bound to (3.18) and
rearranging terms.

The complexity result of the above lemma depends on a predetermined sequence
{λt}. In the proposition below, we provide a complexity result from an example choice
of {λt}.

Proposition 3.2. In the ACGM procedure, at termination we have

max
x∈X

〈∇φ(u+), u+ − x〉 ≤ η.(3.19)

Moreover, if δt = σβD2
X/t for certain σ ≥ 0 and αt is chosen such that

φ(ut) ≤ φ

(

t− 1

t+ 1
ut−1 +

2

t+ 1
vt
)

,(3.20)

then we have for any t ≥ 1 that

min
j=1,...,t+1

〈∇φ(uj−1), uj−1 − vj〉 ≤ min
j=1,...,t+1

max
x∈X

〈∇φ(uj−1), uj−1 − x〉

≤6(σ + 1)βD2
X

t
.

(3.21)



UNIVERSAL CONDITIONAL GRADIENT SLIDING 15

Specially, it takes at most

T := 1 +

⌈

(7σ + 6)βD2
X

η

⌉

(3.22)

iterations for the ACGM procedure to terminate.

Proof. From the definition of the approximate solution vt in (3.10), if the termina-
tion criterion in (3.11) of the ACGM procedure is satisfied, then the output u+ = ut−1

satisfies

max
x∈X

〈∇φ(ut−1), ut−1 − x〉 = max
x∈X

〈∇φ(ut−1), ut−1 − vt〉+ 〈∇φ(ut−1), vt − x〉

≤ (η − δt) + δt = η.

Therefore (3.19) holds. To conclude the proposition it suffices to estimate the rate
of convergence of max

x∈X
〈∇φ(ut−1), ut−1 − x〉. To analyze the rate, let us choose λt =

2/(t+ 1) and apply Lemma 3.1. Then Λt = 2/(t(t+ 1)) and

t
∑

j=2

j · max
x∈X

〈φ(uj−1), uj−1 − x〉

≤σβD2
X



1 +

t
∑

j=2

(

1 +
2

j − 1

j−1
∑

i=1

1

)



+
βD2

X

2



1 +

t
∑

j=2

(

2j

j + 1
+

2

j − 1

j−1
∑

i=1

2i

i+ 1

)





<σβD2
X(3t− 2) +

βD2
X

2
(6t− 5), ∀t ≥ 2.

Noting that
∑t

j=2 j = (t+ 2)(t− 1)/2, we have

min
j=2,...,t

max
x∈X

〈∇φ(uj−1), uj−1 − x〉 ≤ 2

(t+ 2)(t− 1)

t
∑

j=2

j · max
x∈X

〈φ(uj−1), uj−1 − x〉

<
6(σ + 1)βD2

X

t− 1
, ∀t ≥ 2.

Using the above result and observing that

min
j=1,...,t+1

〈∇φ(uj−1), uj−1 − vj〉 ≤ min
j=1,...,t+1

max
x∈X

〈∇φ(uj−1), uj−1 − x〉

≤ min
j=2,...,t+1

max
x∈X

〈∇φ(uj−1), uj−1 − x〉, ∀t ≥ 1

we conclude (3.21). Moreover, from (3.21) and noting the choice of δt, the termination
criterion (3.11) holds whenever

6(σ + 1)βD2
X

t− 1
+

σβD2
X

t
≤ η.

Noting the definition of T (3.22), the above condition clearly holds for all t ≥ T .

In the above proposition, σ ≥ 0 in the definition of δt is a parameter related
to the accuracy of approximately solving linear objective optimization subproblems.



16 Y. OUYANG AND T. SQUIRES

Note that there may also exist other possible choice of δt. For example, similar
complexity result can be derived by choosing δt = ση. The benefit of our proposed
choice δt = σβD2

X/t from the perspective of practical implementation is that it allows
adaptive error of the approximate solution vt to the linear subproblems and larger
error can be admissible when t is small.

As a side note, recalling that ACGM procedure reduces to CGM procedure in
Algorithm 2.2, we can observe that Proposition 2.4 in the previous section is a direct
consequence of the above result:

Proof of Proposition 2.4. Noting that the CGM procedure described in Algorithm
2.2 is equivalent to the ACGM procedure with δt ≡ 0, applying Proposition 3.2 above
with αt = 2/(t+ 1), we conclude the proposition immediately from (3.21).

From the above two proofs, it is clear that Proposition 3.2 is different from Propo-
sition 2.4 in the previous section, since it shows us that we can instead compute an
approximate solution to (3.10) and proceed with the convergence analysis. We will
eventually utilize Proposition 3.2 to establish an upper bound on the number of inner
iterations that Algorithm 3.1 requires to compute an ε-solution. We now continue
onto the outer iteration analysis, starting with a few results that establish the rela-
tion between our computed Lk in the linesearch scheme and the underlying Hölder
exponent ν and constant Mν in (1.3). We will use the following lemma that appeared
in [22].

Lemma 3.3. For any δ > 0 and any L such that

L ≥
(

1− ν

1 + ν
· 1
τ

)
1−ν

1+ν

M
2

1+ν

ν ,

where ν and Mν are the Hölder continuity exponent and constant in (1.3), we have

(3.23) f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2 + τ

2
, ∀x, y ∈ X.

Proof. See Lemma 1 of [22].

Note that for ν = 1, the term
(

1−ν
1+ν

)

1−ν

1+ν

can be handled using a continuity argument

limν→1

(

1−ν
1+ν

)

1−ν

1+ν

= 1. We state an immediate corollary of the above lemma below.

Corollary 3.4. Any Lk > 0 chosen by Algorithm 3.1 according to (3.1) must
also satisfy

Lk ≤ 2

(

1− ν

1 + ν
· 1

εγk

)

1−ν

1+ν

M
2

1+ν

ν

Proof. Suppose that Lk does not satisfy (3.23). Then applying Proposition 3.6
with τ = εγk implies that Lk/2 satisfies (3.1), contradicting the fact that Lk was
chosen at step k following the proposed backtracking linesearch implementation (see
the remark on practical implementation after the description of Algorithm 3.1).

The above result is an immediate consequence of the backtracking linesearch strategy
we use to find a suitable Lk that satisfies (3.1). Based on the above result, we can
estimate a bound of Lkγ

2
k in the proposition below. Recalling that Γk = Lkγ

2
k/k

from (3.6) in Algorithm 3.1, the following lemma provides also a bound of Γk that is
important for the outer iteration complexity analysis.



UNIVERSAL CONDITIONAL GRADIENT SLIDING 17

Lemma 3.5. Let Lk > 0 be chosen by (3.1) of Algorithm 3.1 at step k, then

Lkγ
2
k ≤ CνM

2
1+ν

ν

k
1+3ν
1+ν ε

1−ν

1+ν

where

Cν :=

(

1 + 2ν

1 + 3ν

)

1+3ν
1+ν

(

1− ν

1 + ν

)

1−ν

1+ν

2
4+10ν
1+ν(3.24)

is a constant depending only on ν.

Proof. The case when k = 1 is immediate from Corollary 3.4. Therefore, through-
out the proof we will assume that k ≥ 2. Since we set Γk = Lkγ

2
k/k in Algorithm

3.1, we can prove this proposition by bounding Γk. Set s := (1 + ν)/(1 + 3ν). Since
ν ∈ [0, 1], we have s ∈ [1/2, 1]. We will study the quantity 1/Γs

k − 1/Γs
k−1, which can

be rewritten as

1

Γs
k

− 1

Γs
k−1

=

(

1
Γs

k

− 1
Γs

k−1

)

(

1
Γ1−s

k

+ 1
Γ1−s

k−1

)

1
Γ1−s

k

+ 1
Γ1−s

k−1

=

1
Γk

− 1
Γk−1

− 1
Γk

(

Γk

Γk−1

)s

+ 1
Γk−1

(

Γk−1

Γk

)s

1
Γ1−s

k

+ 1
Γ1−s

k−1

.

Here, noting from the relation of Γk and Γk−1 in (3.13) that Γk ≤ Γk−1 and recalling
that s ∈ [1/2, 1], we can make two observations. First, we have Γ2s−1

k ≤ Γ2s−1
k−1 , and

hence

− 1

Γk

(

Γk

Γk−1

)s

+
1

Γk−1

(

Γk−1

Γk

)s

≥ 0.

Second, we have Γ1−s
k−1 ≤ Γ1−s

k , and hence

1

Γ1−s
k

+
1

Γ1−s
k−1

≤ 2

Γ1−s
k−1

.

Combining the above two observations and recalling that s = (1 + ν)/(1 + 3ν) and
the relations concerning Γk and Γk−1 in (3.13), we have that

1

Γs
k

− 1

Γs
k−1

≥
1
Γk

− 1
Γk−1

2
Γ1−s

k

=

γk

Γk

2
Γ1−s

k

=
γk
2
Γ
−

1+ν

1+3ν

k .

We can further bound the last expression in the above relation. Indeed, recalling that
Γk = Lkγ

2
k/k and applying Corollary 3.4, we have the inequality

γ2
k

kΓk
=

1

Lk
≥ 1

2M
2

1+ν

ν

(

1 + ν

1− ν
· εγk

)
1−ν

1+ν

.

In the above recall that we can use a continuity argument for the ν = 1 case since
(1− ν)−(1−ν) → 1 as ν → 1. Rearranging terms in the above relation, we have

γkΓ
−

1+ν

1+3ν

k ≥
(

1 + ν

1− ν

)

1−ν

1+3ν ε
1−ν

1+3ν k
1+ν

1+3ν

2
1+ν

1+3ν M
2

1+3ν
ν

.



18 Y. OUYANG AND T. SQUIRES

Applying the above bound to (11), it follows that

1

Γs
k

− 1

Γs
k−1

≥
(

1 + ν

1− ν

)

1−ν

1+3ν ε
1−ν

1+3ν k
1+ν

1+3ν

2
2+4ν
1+3ν M

2
1+3ν
ν

.

Summing the above from i = 2 to k and using the fact that

k
∑

i=2

i
1+ν

1+3ν ≥
∫ k

1

u
1+ν

1+3ν du =
1 + 3ν

2 + 4ν
·
(

k
2+4ν
1+3ν − 1

)

≥ 1 + 3ν

4 + 8ν
k

2+4ν
1+3ν , ∀k ≥ 2

and the definition of Cν in (3.24), we obtain

1

Γs
k

≥ 1

Γs
k

− 1

Γs
1

≥
(

1 + ν

1− ν

)

1−ν

1+3ν ε
1−ν

1+3ν

2
4+10ν
1+3ν M

2
1+3ν
ν

1 + 3ν

1 + 2ν
k

2+4ν
1+3ν

Recalling that s = (1 + ν)/(1 + 3ν) and Γk = Lkγ
2
k/k, we conclude the proposition

immediately from the above result.

It should be noted that the technique utilized in Lemma 3.5 is similar to that
of the proof surrounding equation (4.4) in [22]. However, note that the choice of
parameter γk in UCGS is different from the one in [22]. Therefore, the proof in [22]
needs to be adapted to the above proof. With the help of Lemma 3.5, we are now
ready to prove our primary convergence properties on the proposed UCGS algorithm.
We start with the following proposition that resembles the outer iteration analysis in
Proposition 2.1 of the previous section.

Proposition 3.6. Suppose that the parameters in Algorithm 3.1 satisfy βk ≥
Lkγk for all k. Then for any x ∈ X,

f(yk)− ℓk(x) ≤
ε

2
+ Γk

k
∑

i=1

γiβi

2Γi

(

‖x− xi−1‖2 − ‖x− xi‖2
)2

+ Γk

k
∑

i=1

γiηi
Γi

.

Proof. Fix any x ∈ X . From the definitions of ℓk(x) and yk in (3.1) and (3.5)
respectively, we have

1

Γk
ℓk(x) =

k
∑

i=1

1

Γi
(γif(zi) + γi〈∇f(zi), x− xi〉+ 〈∇f(zi), γi(xi − zi)〉)

=

k
∑

i=1

1

Γi
(f(zi) + 〈∇f(zi), yi − zi〉) +

γi
Γi

〈∇f(zi), x− xi〉

− 1− γi
Γi

(f(zi) + 〈∇f(zi), yi−1 − zi〉)

We will now bound three terms in the above relation. First, by convexity of f ,

−(f(zi) + 〈∇f(zi), yi−1 − zi〉) ≥ −f(yi−1).

Second, by our choice of Lk in (3.1) and the definitions of yk and zk in (3.5) and (3.3)
respectively, we have

f(zi) + 〈∇f(zi), yi − zi〉 ≥f(yi)−
Li

2
‖yi − zi‖2 −

ε

2
γi

=f(yi)−
Liγ

2
i

2
‖xi − xi−1‖2 −

ε

2
γi.



UNIVERSAL CONDITIONAL GRADIENT SLIDING 19

Lastly, using the result (3.19) in Lemma 3.1 and noting the definition of φ(x) in (3.9),
we obtain the following result during the termination of the ACGM procedure in
computing xi:

〈∇f(zi), x− xi〉 ≥ βi〈xi − xi−1, xi − x〉 − ηi

=− βi

2

(

‖x− xi−1‖2 − ‖xi − xi−1‖2 − ‖x− xi‖2
)

− ηi

≥− βi

2

(

‖x− xi−1‖2 − ‖x− xi‖2
)

− ηi +
L2
i

2
‖xi − xi−1‖2 .

In the last inequality above we use our assumption that βk ≥ Lkγk for all k. Based
on the above three observations and rearranging terms we obtain that

1

Γk
ℓk(x) ≥

k
∑

i=1

1

Γi

(

f(yi)− (1− γi)f(yi−1)−
γiβi

2
(‖x− xi−1‖2 − ‖x− xi‖2)

)

− 1

Γi

(ε

2
γi + γiηi

)

=
f(yk)

Γk
−

k
∑

i=1

γiβi

2Γi
(‖x− xi−1‖2 − ‖x− xi‖2)−

k
∑

i=1

γiηi
Γi

− ε

2Γk
.

Here in the last equality we use the relations (3.13) and (3.14) and the fact that γ1 = 1
in its definition (3.2). We conclude the result by multiplying by Γk and rearranging
terms.

With the help of Propositions 3.2, Lemma 3.5, and Proposition 3.6, we are ready
to present the complexity results of UCGS in the following theorem.

Theorem 3.7. Suppose that we apply UCGS described in Algorithm 3.1 with pa-
rameters

(3.25) βk = Lkγk, ηk =
LkγkD

2
X

k
, and εk =

σLkγkD
2
X

2
,

and αt in (3.12) and δt = σβD2
X/t in the ACGM procedure, where σ ≥ 0 is a pa-

rameter related to the accuracy of approximately solving linear objective optimization
subproblems. Then Algorithm 3.1 terminates with an ε-solution after at most Ngrad

gradient evaluations and Nlin linear objective optimizations, where

Ngrad :=









16

(

(3 + σ)
1+ν

2 MνD
1+ν
X

ε

)
2

1+3ν









and

Nlin :=

⌈(

7

2
σ + 3

)

N2
grad +

(

7

2
σ + 6

)

Ngrad

⌉

.

Proof. From the definition of sk in Algorithm 3.1, we have that if the termination
criterion of UCGS in (3.8) holds, then yk is an ε-solution to problem (1.1). Let us
evaluate the number of gradient evaluations, or equivalently, the number of outer
iterations of UCGS in order to compute an ε-solution yk. Applying Proposition 3.6
with our choice of parameters we have

f(yk)− ℓk(x) =
ε

2
+

Γk

2

k
∑

i=1

i(‖x− xi−1‖2 − ‖x− xi‖2) + ΓkkD
2
X , ∀x ∈ X.

(3.26)



20 Y. OUYANG AND T. SQUIRES

The second term above can be further simplified by noting from the compactness of
X and the definition of the diameter DX in (1.2). Indeed, we have

k
∑

i=1

i
(

‖x− xi−1‖2 − ‖x− xi‖2
)

= ‖x− x0‖2 +
k
∑

i=2

(i− (i − 1)) ‖x− xi−1‖2 − k ‖x− xk‖2

≤D2
X +

k
∑

i=2

D2
X = kD2

X , ∀x ∈ X.

(3.27)

Thus, we may continue by applying (3.27) to (3.26) with x = sk to conclude that

f(yk)− ℓk(sk) ≤
ε

2
+

Γk

2
kD2

X + ΓkkD
2
X =

ε

2
+

3Lkγ
2
k

2
D2

X .

Here we make use of the description of Γk in (3.6) for the last equality. In view of
the above result and the value of parameter εk in (3.25), yk satisfies the termination
criterion (3.8) of UCGS and hence becomes an ε-solution whenever k satisfies the
relation (3+σ)Lkγ

2
kD

2
X ≤ ε. Applying Lemma 3.5, it follows that such relation holds

whenever

(3 + σ)CνD
2
XM

2
1+ν

ν

k
1+3ν
1+ν ε

1−ν

1+ν

≤ ε, i.e., k ≥ C
1+ν

1+3ν
ν

(

(3 + σ)
1+ν

2 MνD
1+ν
X

ε

)
2

1+3ν

.

Noting that Cν defined in (3.24) is a constant that depends only on ν ∈ [0, 1] and

observing that C
1+ν

1+3ν
ν ≤ 16 for all ν ∈ [0, 1], we conclude that whenever k ≥ Ngrad, yk

is an ε-solution. Therefore, UCGS requires at most Ngrad gradient evaluations of ∇f
to compute an ε-solution.

It suffices to compute the number of linear objective optimizations that UCGS
requires for computing an ε-solution. This is equivalent to estimating the total number
of inner iterations that UCGS requires. Let us estimate the maximal number of
inner iterations required before the termination criterion (3.11) is satisfied. Recall
from the remark after (3.12) that αt is the best linesearch parameter and hence
satisfies assumption (3.20) in Proposition 3.2. Applying Proposition 3.2 and noting
the definition of approximate solution vt in (3.10), we have that the maximal number
of linear objective optimizations performed at the k-th call to the ACGM procedure
is at most

Tk := 1 +

⌈

(7σ + 6)βkD
2
X

ηk

⌉

= 1 + ⌈(7σ + 6)k⌉.

Adding one linear objective optimization problem in (3.7) in each other iteration
concerning the termination criterion of UCGS, we conclude that the total number of
linear objective optimizations for UCGS to compute an ε-solution is bounded above
by

Ngrad
∑

k=1

(Tk + 1) ≤
Ngrad
∑

k=1

3 + (7σ + 6)k =

(

7

2
σ + 3

)

N2
grad +

(

7

2
σ + 6

)

Ngrad.



UNIVERSAL CONDITIONAL GRADIENT SLIDING 21

We conclude this section with a few remarks on the above complexity results of
UCGS. First, we note that UCGS is similar to FGM in [22] in the sense that the
number of gradient evaluations generalizes the accelearated gradient descent method
in [21]. From Theorem 3.7, number of gradient evaluations required by UCGS to

compute an approximate solution is O((MνD
1+ν
X /ε)

2
1+3ν ). In the smooth case when

ν = 1, this becomes O(
√

M1D2
X/ε) which matches the complexities of gradient eval-

uations in n[22, 21]. Second, unlike FGM that requires exact solutions to projection
subproblems, we have a bound on the number of linear objective optimizations re-
quired to solve the projection subproblem (3.4). From this perspective, UCGS is a
generalization of CGS in [15] as a universal method that covers not only the smooth
case (when ν = 1) but also the weakly smooth case (when ν ∈ (0, 1)), without re-
quiring any knowledge of Hölder exponent ν and constant Mν . Indeed, when ν = 1
our complexity on the number of linear objective optimizations is on the order of
O(M1D

2
X/ε), which matches the that of CGS in [15]. Third, the number of linear

objective optimizations and gradient evaluations when CG is applied to (1.1) was

shown to be O
(

(

MνD
1+ν/ε

)
1
ν

)

in [19, 8]. In view of Theorem 3.7, UCGS bene-

fits from sliding and only requires O
(

(

MνD
1+ν/ε

)
2

1+3ν

)

gradient evaluations and

O
(

(

MνD
1+ν/ε

)
4

1+3ν

)

linear objective optimizations which are both improvements

over the results in [19, 8] whenever ν ∈ (0, 1]. Fourth, our proposed UCGS method is
not only a universal method generalization of the CGS in [15]. Indeed, there are more
features added for practical implementation: it has an implementable exit criterion
and allows for an approximate solution to (3.10). Note that such added features of the
UCGS does not affect its theoretical complexity. Finally, we use the same accuracy
constant σ for approximately solving the linear subproblems in setting the parameters
εk and δt. It is easy to change the proof if we use different accuracy constants for εk
and δt.

4. Numerical results. Our goal in this section is to present preliminary results
from our numerical experiments. We will compare the performance of our proposed
UCGS algorithm with that of the CG method in [19] in two numerical experiments
described below. The experiments are performed using MATLAB R2018b.

In the first experiment, we consider the problem

min
x∈conv(V )

f(x) := ‖Ax− b‖2

with V = {v1, . . . , vp} ⊆ R
n, conv(V ) := {x ∈ R

n : ∃λ ∈ ∆p s.t. x =
∑p

j=1 λivi}, and
∆p := {λ ∈ R

p :
∑p

i=1 λi = 1, λi ≥ 0} is the standard simplex. In this experiment,
we generated vectors vi uniformly in [0, 1]n. The matrix A ∈ R

m×n is a Gaussian
randomly generated sparse matrix with density d. For this experiment, we fix the
number of vectors in the set V to be p = 500 and set m = 2n. The linear objective
optimization subproblem is a linear program over the standard simplex and can be
computed easily.

For our second experiment, we solve the problem

min
X∈Spe

n

f(X) :=

m
∑

i=1

‖X −Ai‖2

where Spen := {X ∈ R
n×n : tr(X) = 1, X � 0} and Ai ∈ Spen for each i =

1, . . . ,m. The matrices Ai are obtained by randomly generating an n × n matrix



22 Y. OUYANG AND T. SQUIRES

whose entries follow uniform [0, 1] distributions and then projecting it into Spen. The
linear objective optimization problem over Spen is equivalent to a smallest eigenvalue
problem, which will be solved by MATLAB’s eigs() function. Note that a solution
to the smallest eigenvalue problem will not be exact, and therefore we benefit from
being able to solve the linear subproblems approximately.

In our experiments, UCGS will terminate whenever an ε-solution with tolerance
ε = 10−3 is computed. We will terminate CG if its computational time exceeds twice
the amount that UCGS spent before termination. Note that both models in the
experiments have nonsmooth objective functions, but are still differentiable at many
feasible points. Therefore, they may benefit from a universal method for ν ∈ (0, 1].

UCGS CG

n d GE LO Time Error Iter Time Error

2500 0.2 66 2690 6.71 9.945e− 4 572 13.42 9.7086e1
2500 0.4 60 3679 9.08 9.976e− 4 524 18.17 1.404e2
2500 0.6 62 245 2.64 9.678e− 4 146 5.29 5.598e2
2500 0.8 57 3176 8.45 9.768e− 4 399 16.93 2.400e2
5000 0.2 71 286 7.13 9.882e− 4 178 14.32 6.037e2
5000 0.4 42 52 4.89 9.585e− 4 84 9.81 1.689e3
5000 0.6 68 4564 36.14 9.727e− 4 483 72.40 3.527e2
5000 0.8 67 419 12.91 9.815e− 4 161 25.94 1.165e3
10000 0.2 85 12269 150.51 9.96e− 4 915 301.21 2.449e2
10000 0.4 69 12614 157.39 9.916e− 4 636 315.27 4.734e2
10000 0.6 70 16063 205.87 9.821e− 4 653 412.14 5.423e2
10000 0.8 69 12707 180.65 9.862e− 4 473 361.73 8.162e2

Table 1

Minimizing over a convex hull. Here, we report the gradient evaluations (outer iterations) and
linear objective optimization (inner iterations) for UCGS as well as the error that it terminated
with. For CG, we allow it to run for twice the amount of time that UCGS took. We then report the
number of iterations and whether terminating objective value was better than that of UCGS.

UCGS CG

n m GE LO Time Error Iter Time Error

50 50 1354 8493 9.87 9.992e− 4 6908 19.74 6.073e− 3
50 100 1767 11138 13.09 9.994e− 4 7038 26.19 1.172e− 2
50 200 2425 15173 25.39 9.995e− 4 8273 50.79 2.271e− 2
100 50 1836 13056 159.61 9.980e− 4 11648 319.25 3.225e− 3
100 100 2347 16816 216.59 9.990e− 4 13372 433.20 5.634e− 3
100 200 3296 23836 310.16 9.984e− 4 16053 620.36 9.892e− 3
200 50 1722 33673 470.71 9.989e− 4 15966 941.43 3.308e− 3
200 100 2314 46323 730.69 9.994e− 4 17033 1461.42 6.870e− 3
200 200 3154 64511 1086.42 9.992e− 4 19762 2172.85 1.015e− 2

Table 2

Minimizing over standard spectrahedron. Here, we report the gradient evaluations (outer iter-
ations) and linear objective optimization (inner iterations) for UCGS as well as the error that it
terminated with. For CG, we allow it to run for twice the amount of time that UCGS took. We
then report the number of iterations and whether terminating objective value was better than that of
UCGS.

The results from the numerical experiments are documented in Tables 1 and 2.



UNIVERSAL CONDITIONAL GRADIENT SLIDING 23

Columns 1 indicates the sizes n1 whereas the second column represents either the
density of A or the value of m for experiments 1 and 2 respectively. Columns 3 and
4 denote the number of outer iterations, i.e. gradient evaluations (GE), and inner
iterations, i.e. linear objective optimization (LO), respectively that UCGS performed
before terminating with the desired tolerance. Columns 5 and 6 present the time
(in seconds) used and error upon termination of UCGS. For CG, we report the total
number of iterations (Iter) performed, the computational time (in seconds) required
and the final error in Columns 7, 8, and 9. Note that if the time of CG is twice that
of UCGS, then the error is not expected to be below our specified tolerance.

Let us make a few comments regarding the results in Tables 1 and 2. For the
convex hull experiment in Table 1, we see that the excessive number of gradient
evaluations of CG prevents it from being competitive. The gradient of our objective
function requires a matrix multiplication of increasingly dense matrices. As these
densities tend to 1, the gradient evaluations become more computationally expensive,
and CG cannot report as good of a solution as UCGS with even in twice the allotted
time, because it requires much more gradient evaluations to compute an approximate
solution. We also note the necessity of a projection-free algorithm for this feasible set
since the projection onto the convex hull requires the solving of a quadratic program.
For any moderately sized n, this quadratic program is computationally infeasible to
solve. For example, one iteration of FGM in [22] applied to the problem instance with
n = 2500 and d = 0.2 takes at least 20 seconds, which is three times as long as UCGS
took to converge.

The second experiment over the standard spectrahedron removes the previous
difficulty of computing the gradient. In experiment 2, the cost of the gradient eval-
uation is almost negligible. However, we still see in Table 2 that UCGS outperforms
CG. In this case, the superior linear objective optimization complexity of UCGS can
be seen by noting that CG performs 1 linear objective optimization per iteration.
Thus, even with a comparable amount of linear objective optimizations, CG can still
not match the complexity of UCGS. This directly highlights the differences in the
linear objective optimization complexity mentions previously. We also observe the
effectiveness of the implementable stopping criterion which enabled us to terminate
when an ε-solution was achieved.

5. Concluding remarks. In this paper, we present a novel projection-free
method, namely the universal conditional gradient sliding (UCGS) method, for convex
differentiable optimization with Hölder continuous gradients. We show that UCGS
is a generalization of other conditional gradient type methods in terms of gradient
evaluations and linear objective optimizations and at the same time has a more
practical implementation by requiring less problem dependent parameters. Specif-
ically, for an objective function whose gradient is Hölder continuous with exponent
ν ∈ (0, 1] and constant Mν > 0, we prove that UCGS is able to terminate and
output an ε-solution with at most O((MνD

1+ν
X /ε)2/(1+3ν)) gradient evaluations and

O((MνD
1+ν
X /ε)4/(1+3ν)) linear objective optimizations. Moreover, it is able to per-

form the computation without requiring any specific knowledge of the Hölder exponent
ν and constant Mν. UCGS improves the state-of-the-art complexity results (achieved
by the conditional gradient method [19, 8]) of first-order projection-free methods
when ν ∈ (0, 1). It also matches the state-of-the-art complexity results when ν = 1
(achieved by the conditional gradient sliding method [15]) and adds more features

1Note that the length of the vectors are n and n2 in the first and second experiments respectively.



24 Y. OUYANG AND T. SQUIRES

allowing for practical implementation.
The results of this paper can be further generalized. First, if there exists a

prox-function x 7→ V (u, x) defined over the feasible set X that is strongly convex
and has Lipschitz continuous gradients with respect to a general norm ‖ · ‖ (see,
e.g., [9, 4] for discussions on such prox-functions), then it can be shown that the
UCGS can be generalized to a non-Euclidean version that still achievesO(1/ε2/(1+3ν))
gradient evaluations and O(1/ε4/(1+3ν)) linear objective optimizations. The constants
in these complexities will depend on the smoothness information ν and Mν with
respect to the general norm ‖ · ‖, the diameter of X in terms of maxx,y∈X V (x, y),
and the strongly convex constant of the prox-function and the Lipschitz constant
of its gradient. Second, while we focus on convex differentiable optimization, the
results in this paper can also be extended to non-differentiable cases. Indeed, note
that a convex function that is Lipschitz continuous with constant 2M0 also satisfies
the Hölder condition we describe in (1.3) with exponent ν = 0 and constant M0.
Also, our proof throughout this paper can be easily extended by replacing gradients
∇f to subgradients f ′. Consequently, Theorem 3.7 shows that UCGS computes an
ε-solution with O((M0DX/ε)2) subgradient evaluations and O((M0DX/ε)4) linear
objective optimizations.

We conclude this paper by discussing some potential future work. First, similar
to the conditional gradient sliding method [15], our proposed UCGS requires some in-
formation on the diameter DX of the feasible set X . It is interesting to study whether
this diameter can be estimated adaptively by backtracking search, similar to the line-
search strategy we use to estimate the smoothness information Lk. Second, while we
mention in the above generalization of UCGS that our results can be extended to
convex non-differentiable optimization, if we focus solely on non-differentiable cases,
there exists interesting complexity results in the literature. Specifically, in [23] it is
shown that in the non-differentiable case it is possible to achieve O((M0DX/ε)2) com-
plexity for both subgradient evaluations and linear objective optimizations whenever
the objective function is Lipschitz continuous. The method in [23] can only be applied
to nonsmooth cases when ν = 0, and is unknown whether it can be generalized to
a universal method that uniformly computes approximate solutions for nonsmooth,
weakly smooth, and smooth convex optimization problems. It is a potential future
work to study whether the technique in [23] can improve our developed linear objec-
tive optimization complexity of the Hölder continuous gradient case when ν ∈ (0, 1],
and whether a universal method for all cases ν ∈ [0, 1] can be developed.

REFERENCES

[1] A. Beck, First-order methods in optimization, SIAM, 2017.
[2] S. Bubeck, Convex optimization: Algorithms and complexity, Foundations and Trends® in

Machine Learning, 8 (2015), pp. 231–357.
[3] Y. Chen, G. Lan, Y. Ouyang, and W. Zhang, Fast bundle-level methods for unconstrained

and ball-constrained convex optimization, Computational Optimization and Applications,
73 (2019), pp. 159–199.

[4] C. D. Dang and G. Lan, On the convergence properties of non-Euclidean extragradient meth-
ods for variational inequalities with generalized monotone operators, Computational Op-
timization and applications, 60 (2015), pp. 277–310.

[5] O. Devolder, F. Glineur, and Y. Nesterov, First-order methods of smooth convex opti-
mization with inexact oracle, Mathematical Programming, 146 (2014), pp. 37–75.

[6] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval research logistics
quarterly, 3 (1956), pp. 95–110.

[7] R. M. Freund and P. Grigas, New analysis and results for the Frank–Wolfe method, Math-



UNIVERSAL CONDITIONAL GRADIENT SLIDING 25

ematical Programming, 155 (2016), pp. 199–230.
[8] S. Ghadimi, Conditional gradient type methods for composite nonlinear and stochastic opti-

mization, Mathematical Programming, 173 (2019), pp. 431–464.
[9] S. Ghadimi and G. Lan, Optimal stochastic approximation algorithms for strongly convex

stochastic composite optimization I: A generic algorithmic framework, SIAM Journal on
Optimization, 22 (2012), pp. 1469–1492.

[10] Z. Harchaoui, A. Juditsky, and A. Nemirovski, Conditional gradient algorithms for norm-
regularized smooth convex optimization, Mathematical Programming, 152 (2015), pp. 75–
112.

[11] M. Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization., in ICML (1),
2013, pp. 427–435.

[12] G. Lan, Bundle-level type methods uniformly optimal for smooth and nonsmooth convex opti-
mization, Mathematical Programming, 149 (2015), pp. 1–45.

[13] G. Lan, Gradient sliding for composite optimization, Mathematical Programming, 159 (2016),
pp. 201–235.

[14] G. Lan, First-order and Stochastic Optimization Methods for Machine Learning, Springer,
2020.

[15] G. Lan and Y. Zhou, Conditional gradient sliding for convex optimization, SIAM Journal on
Optimization, 26 (2016), pp. 1379–1409.

[16] E. S. Levitin and B. T. Polyak, Constrained minimization methods, USSR Computational
mathematics and mathematical physics, 6 (1966), pp. 1–50.

[17] H. Nazari and Y. Ouyang, Backtracking linesearch for conditional gradient sliding, arXiv
preprint arXiv:2006.05272, (2020).

[18] A. Nemirovski and D. Yudin, Problem complexity and method efficiency in optimization,
Wiley-Interscience Series in Discrete Mathematics, John Wiley, XV, 1983.

[19] Y. Nesterov, Complexity bounds for primal-dual methods minimizing the model of objective
function, Mathematical Programming, 171 (2018), pp. 311–330.

[20] Y. Nesterov, Lectures on Convex Optimization, vol. 137, Springer, 2018.
[21] Y. E. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer

Academic Publishers, Massachusetts, 2004.
[22] Y. E. Nesterov, Universal gradient methods for convex optimization problems, Mathematical

Programming, 152 (2015), pp. 381–404.
[23] K. K. Thekumparampil, P. Jain, P. Netrapalli, and S. Oh, Projection efficient subgradi-

ent method and optimal nonsmooth frank-wolfe method, arXiv preprint arXiv:2010.01848,
(2020).


	1 Introduction
	2 Conditional gradient sliding method in the Hölder case
	3 Practical universal conditional gradient sliding method
	4 Numerical results
	5 Concluding remarks
	References

