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1 Minimization Through Composition

Consider the Euclidean function. Despite being common in optimization, this function is neither
smooth nor strongly convex. For this reason, it would be natural to assume that minimizing
this norm via iterative methods would be a slowly converging process. However, if we instead
minimize f(x) = ||x||22, we have much more desirable properties. The function f is both
strongly convex and smooth and maintains the same minimizer as the Euclidean norm. This
was accomplished by composing our origin function with a monotonically increasing function.
Can we apply a similar process to other convex functions to obtain reformulations with better
properties? In this section, we explore smoothing convex functions through composition.

Let f : X → R be a continuous, convex function over a compact set X ⊂ Rn. For simplicity,
let us assume that f has a unique minimizer x∗. Our goal is to find a function g : R→ R such
that h(x) := (g ◦ f)(x) is a convex and differentiable over X with

x∗ := argmin
x∈X

f(x) = argmin
x∈X

h(x).

We know that to maintain the minimizer, we must enforce that g′(f(x0)) > 0 for any x0 ∈
X \ {x∗}. To study differentiability, we will utilize subdifferential sets. Recall that a convex
function has a nonempty subdifferential set at any point in its domain. Furthermore, f is
differentiable at x0 ∈ X if and only if the subdifferential of f at x0 is a singleton. Let x0 ∈ X.
From convex analysis, it can be shown that

∂h(x0) = {αβ | (α, β) ∈ ∂g(f(x0))× ∂f(x0)}.

We will proceed into two cases.
Assume that f is differentiable at x0 ∈ X. Then ∂f(x0) is a singleton. Thus, in order for

∂h(x0) to be a singleton, either g must be differentiable at f(x0) or ∇f(x0) = 0. Since we do
not want to assume knowledge of points satisfying ∇f(x0) = 0, we will instead enforce that g
be differentiable everywhere.

Now consider the case when f is non-differentiable at x0 ∈ Rn. Then |∂f(x0)| > 1. Thus,
in order for ∂h(x0) to be a singleton, we must have that g′(f(x0)) = 0.

To summarize, to ensure that h is differentiable over X, we must choose a differentiable
function g satisfying g′(f(x0)) = 0 for any point x0 ∈ X such that f is non-differentiable at
x0. However, in order for h be convex and have the same minimizer as f , we must also require
g′(f(x0)) > 0 for x0 ∈ X \ {x∗}. Here, we see the difficulties of choosing our function g. We
cannot create smoothness at x0 ∈ X unless x0 is itself the minimizer of f . This also explains
the previously noted phenomenon with the Eulcidean norm. g(x) = x2 is differentiable and
convex over the image of f(x) = ||x||22 and satisfies g′(f(x∗)) = g′(0) = 0. Unfortunately, for
most functions, this will not be the case. We leave the analysis of the (strong) convexity of h
to future study.

2 On the Duality Between Smoothing and Catalyst Algorithms

A popular direction in current literature is to approximate an objective function f with a
separate function fµ parameterized by µ > 0 such that the minimizer of fµ is close to the
minimizer of f and fµ has additional optimization properties. These additional properties will
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allow for accelerated methods to be used to minimize fµ which are not possible with f . If
the acceleration is large and the difference in minimizers is not, then minimizing fµ may be a
much better approach to finding an approximate minimizer for f . For example, if f is convex,
nonsmooth, then smoothing it lets us move from the subgradient error rate (O(1/

√
t)) to a

faster rate (O(1/t)). If f is smooth and convex but not strongly convex, then we may look
to for a strongly convex fµ to benefit from strongly convex methods. Here we show that the
two proposed ideas, smoothing and catalyst methods, are merely duals of each other. We will
heavily rely on convex conjugate theory - which we will briefly review.

For any function real valued function f , we define its convex conjugate via

f∗(y) = sup
x∈dom f

yTx− f(x).

Furthermore, if f is proper, lower semicontinuous and convex, then f satisfies the biconjugacy
property f = (f∗)∗. In this case, we can rewrite f as

f(x) = sup
y∈dom f∗

xT y − f∗(y).

The functions f and f∗ are related in many ways. One that will be of importance to us is the
following.

Theorem. Let f : Rn → R be a proper, continuous, closed, convex function. Then f is strongly
convex with strong convexity parameter µ > 0, if and only if f∗ is differentiable with Lipschitz
continuous gradient and Lipschitz constant 1/µ.

In short, under ideal conditions, the strong convexity of f or f∗ implies the smoothness
of the other and vice versa. This suggests a duality relationship between smoothing methods
and catalyst methods. By catalyzing (i.e. to make strongly convex) the convex conjugate, we
construct a smooth approximation to the original function. By smoothing the convex conjugate,
we construct a strongly convex approximation to the original function.

We can use this duality relationship to more easily understand popular algorithms such
as Nesterov’s smoothing technique. By the above theorem, if we want to construct a smooth
approximation fµ to f , then it suffices to catalyze f∗. Using the standard catalyst approach,
we can construct a strongly convex approximation to f∗ via

f∗µ(y) = f∗(y) + µd(y) = sup
x∈dom f

yTx− f(x) + µd(y)

where d : Rn → R is a strongly convex prox function. Taking the convex conjugate again to
get back fµ from the biconjugacy property, we obtain

fµ(x) = sup
y∈dom f∗

xT y − f∗µ(y) = sup
y∈dom f∗

xT y − f∗(y)− µd(y)

which is precisely Nesterov’s smoothing technique. This suggests another method of construct-
ing catalyst/smoothing algorithms. For any given catalyst algorithm, simply applying it to the
convex conjugate of a sufficiently nice function f will result in a smoothing algorithm for f .
We can use this idea to construct another catalyst technique via Moreau-Yosida smoothing.
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3 Proximal Problems

Iterative minimization techniques of a convex objective function can be understood and inter-
preted in many different ways. For example, if one were to try to minimize a differentiable
function f , a very natural idea is a gradient descent method:

xk+1 = argmin
x∈X

||x− (xk − λ∇f(xk))||2 .

Here, we are constructing the point xk+1 by moving in the negative gradient direction and then
projecting back onto some constraint set X. However, we can also rewrite the gradient descent
step by expanding the norm term to obtain

xk+1 = argmin
x∈X

〈∇f(xk), x〉+
1

2λ
||x− xk||2 .

This formulation reveals to us a different interpretation of a gradient descent step - instead
of minimizing f , we will iteratively minimize a linear approximation of f while also keeping
our new iterative close to our previous one. The additional proximal term ||x− xk||2 keeps us
close to the previous iterate, at the cost of potentially making the subproblem not a linear one.
The importance of each term is balanced by the parameter λ which we previously understood
as a step size. Indeed, from this interpretation, if our step size is small, then it will be more
important to keep close to the previous iteration.

From the latter interpretation of gradient descent, we can recover a method for minimizing
nonsmooth functions. In the absence of an easy linear approximation to the function, we can
instead iteratively solve a proximal problem, i.e.

xk+1 = proxλf (xk) := argmin
x∈X

f(x) +
1

2λ
||x− xk||2 .

Here, the idea remains the same: we simply minimize our function while keeping close to a
previously computed point. The two are balanced by the parameter λ. Unfortunately, unlike
in the gradient descent step, the proximal problem is not computable via projection. Although
this idea is straight forward in theory, computing a solution to the proximal problem may be
no easier than minimizing f . In instances where a solution to the proximal problem can be
obtained easily, the proximal point algorithm is clearly preferred, but this is not always the
case.

4 Moreau Envelope and Simple Smoothing Argument

Define the infimal convolution operator applied to two functions f and g as

(f�g)(v) = inf
x
f(x) + g(v − x).

Now suppose that f is a nonsmooth function and let g(x) = 1
2 ||x||

2. Then the Moreau envelope
of f with constant λ > 0 is defined as

Mλ,f (v) := (λf�g)(v) = inf
x
f(x) +

1

2λ
||x− v||2 .
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The Moreau envelope has many nice properties. It has domain in Rn, is strongly convex and
continuously differentiable, and has the same minimizers as f . However, the Moreau envelope
is obviously harder to compute first order information for. Indeed, from above the zero-th order
information is a minimization problem and it can be shown that

∇Mλ,f (v) =
1

λ
(v − proxλf (v))

i.e, the gradient is computed via a proximal problem. Nonetheless, the Moreau envelope can be
a powerful tool in the minimization of nonsmooth functions as it creates an auxillary problem
to solve that has better properties than the underlying problem.

Let us briefly observe how the Moreau envelope achieves its smoothing. Letting f∗ denote
the convex conjugate of a real valued function f , it can be shown that

(f�g)∗ = f∗ + g∗.

Since M∗∗f = Mf and g is self-dual, we conclude that

Mf = (M∗f )∗ = (f∗ + g)∗.

That is, the Moreau envelope can be obtained by catalyzing the convex conjugate of f , and
then taking its conjugate again. Since the convex conjugate of a strongly convex function must
be smooth, the Moreau envelope itself is then (1/λ)-smooth.
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