
1

1 Introduction

This document is intent on finding an ε > 0 solution x̂ to the following problem

f∗ := min
x∈X

f(x) (1)

where f : X → R is a convex, continuous, non-differentiable function with f∗ > −∞, and X is a a
convex, compact set with diameter Dx := max

x,y∈X
||x− y|| <∞ in the sense that f(x̂)− f∗ < ε. Here, ||·||

denotes the Euclidean norm. To motivate the analysis, we provide a brief overview of previous literature.
Traditional methods of convex minimization primarily rely on the differentiability of f , so we will

begin there. Consider a slightly modified version of (1) :

h∗ := min
x∈X

h(x). (2)

where h is L-smooth, i.e. h is differentiable and has a Lipschitz continuous gradient with Lipschitz
constant L > 0. Under these settings, Nesterov presented an algorithm called Accelerated Gradient
Descent (AGD) that can find an ε solution to (2) in O(

√
LD2

x/ε) iterations. More specifically, for xk
generated by AGD applied to (2), we have

h∗ − h(xk) ≤ O
(
LD2

X

k2

)
(3)

(see [1]). It was later proved that such a complexity class is optimal for solving problems of this form
using first order deterministic methods. The algorithm is described as follows:

Algorithm 1 Nesterov’s accelerated gradient descent (AGD)

Start: Choose x0 ∈ X. Set x̄0 := x0
for k = 1, . . . , N do

xk =(1− γk)x̄k−1 + γkxk−1,

xk =argmin
u∈X

〈∇h(xk), u〉+
ηk
2
‖u− xk−1‖2,

x̄k =(1− γk)x̄k−1 + γkxk.

end for
Output x̄N .

However, the proof of AGD greatly hinges on the fact that h is L-smooth. To solve (1), we must
find a way around this issue. One such algorithm called the subgradient method exists for solving non-
differentiable problems. Unfortunately, it requires O(1/ε2) iterations to achieve an ε-solution and is
quite far from the O(1/

√
ε) guaranteed by AGD.

A more natural approach to solving (1) is to find a smooth approximation fµ to f that is L-smooth. If
the approximation is good enough, then we can simply apply AGD to fµ to achieve desirable performance.
The objective is now simple: design a good approximation fµ of f so that minimizing fµ is as close to
solving (1) as possible.

2 Nesterov’s Smoothing

There are many ways to find a smooth approximation of fµ, but we will focus on Nesterov’s technique.
Assume that f from (1) can be represented by

f(x) = max
y∈Y
〈Ax+ b, y〉 − φ(y) (4)

where φ : Y → R and Y is a convex, compact set. Nesterov proposes the following smooth approximation
of f

fµ(x) = max
y∈Y
〈Ax+ b, y〉 − φ(y)− µd(y) (5)

where d(y) is called a prox function that satisfies

2

• d(y) is continuous and 1-strongly convex on Y ;

• min
y∈Y

d(y) = 0

and µ ≥ 0. Before we discuss the properties of fµ in (5), let us first examine the assumption in (4).
Recall that if f is convex, lower semi-continuous, and proper, i.e. f∗ > −∞, then (f∗)∗ = f where f∗

denotes the convex conjugate (or Fenchel transform)

f∗(y) = sup
x∈X
〈x, y〉 − f(x). (6)

Thus, for f with properties listed in (1), f(x) admits its Fenchel representation

f(x) = max
y∈dom f∗

〈y, x〉 − f∗(y). (7)

We know previously that f∗ defined in (6) is convex. Thus, if we could show that dom f∗ is convex, com-
pact, then f always has at least one representation of the form in (4). There are numerous assumptions
that ensure this condition. For example, if f itself is Lipschitz continuous, then dom f∗ is compact (see
[2]). That is, the assumptions made previously are not particularly stringent. We proceed to proving
properties of the smooth approximation (5).

Lemma 1. For fµ defined in (5), we have the following

• fµ(x) is continuously differentiable;

• ∇fµ(x) = AT y(x) where y(x) = argmax
y∈Y

〈Ax+ b, y〉 − φ(y)− µd(y);

• fµ(x) is L-smooth with constant Lµ := ||A||2
µ where ||A|| := maxx{||Ax|| : ||x|| ≤ 1}.

Proof. The proofs of the first two bullets follow directly from results in convex optimization. In particular,
the subgradient set ∂fµ(x) = AT argmax

y∈Y
〈Ax + b, y〉 − φ(y) − µd(y). Since µ > 0 and d(y) is strongly

convex, the maximization problem has unique solution and thus the subgradient set is a single set, i.e.
∂fµ(x) = ∇fµ(x). These results are not our primary focus in this document, so we refer the reader to
[3] for additional details regarding subgradients and differentiability of convex functions. To prove the
last claim, let x1, x2 ∈ X and y1 = argmax

y∈Y
〈x1, y〉 − f∗(y) and y2 = argmax

y∈Y
〈x2, y〉 − f∗(y). Assume for

brevity and without loss of generality that φ and d are differentiable. Then by the optimality conditions
of these two optimization problems, we have

〈Ax1 + b−∇φ(y1)− µ∇d(y1), y1 − y2〉 ≥ 0

〈Ax2 + b−∇φ(y2)− µ∇d(y2), y2 − y1〉 ≥ 0.

Adding them together and applying the convexity, strong convexity of φ and d respectively, we obtain

〈A(x1 − x2), y1 − y2〉 ≥ 〈∇φ(y1)−∇φ(y2) + µ(∇d(y1)−∇d(y2)), y1 − y2〉
≥ µ〈∇d(y1)−∇d(y2), y1 − y2〉

≥ µ ||y1 − y2||2 .

Applying Cauchy-Schwarz, we continue with

||y1 − y2|| ≤
||A||
µ
||x1 − x2|| .

After noting the above and the definition of ∇fµ(x), we conclude the proof.

Lemma 2. For any µ ≥ 0, let D2
Y = max

y∈Y
d(y). We have

f(x)− µD2
Y ≤ fµ(x) ≤ f(x).

Proof. This is an immediate consequence of 0 ≤ d(y) ≤ D2
Y .

3

With this approximation fµ(x) in hand, we can apply AGD to fµ(x) to solve for an ε−solution.

Theorem 1. Apply AGD to minimize fµ(x) to obtain an approximate solution xk. Then the error must
satisfy

f(xk)− f∗ ≤ O

(
||A||2D2

X

µk2
+ µD2

Y

)
(8)

Proof. Note that the error can be decomposed into an approximation and optimization error as follows

f(xk)− f∗ = f(xk)− fµ(xk) + fµ(xk)− f∗ ≤ (f(xk)− fµ(xk)) + (fµ(xk)− fµ,∗)

where fµ,∗ := min
x∈X

fµ(x). From Lemma 2, the approximation error f(xk) − fµ(xk) is bounded above

by µD2
Y . Applying AGD to fµ, equation (3) implies that the optimization error is O

(
||A||2D2

X

µk2

)
since

Lµ = ||A||2
µ . We sum these two errors to conclude (8).

Corollary 1. Let µ = O(ε/D2
Y) in Theorem 1. Then

f(xk)− f∗ ≤ O

(
||A||2D2

XD
2
Y

εt2

)
+ ε

and the total number of iterations needed to compute an ε-solution is at most Nε = O
(
||A||DXDY

ε

)
.

3 Concluding Remarks and Numerical Experiments

We have just seen how to construct an L-smooth approximation to a (lower semi-) continuous convex
function in theory. However, a few remarks are still in order before the practicality of the algorithm can
be determined. Recall that we assumed f can be represented of the form in (4). While it is argued that
such a representation very likely exists (such as the Fenchel representation), finding f∗(y) is not always
easy. In fact, there are many cases when the representation in (4) is not only not unique, but much easier
to compute if the Fenchel representation is not the one used. For example1, let f(x) = max

1≤i≤m

∣∣aTi x− bi∣∣
with ai, bi ∈ Rn for all 1 ≤ i ≤ m. Computing f∗ is by no means a trivial task, but

f(x) = max
y∈Rm

{(aTi x− bi)yi :
∑
i

|yi| ≤ 1}

is of the form in (4).
Furthermore, the computation of xk in Algorithm 1 requires the computation of the gradient of the

smoothed approximation fµ = AT y(x). However, y(x) is not necessarily easily computable either. This
smoothing technique proposed by Nesterov (called NEST-S) works best if y(x) can be computed quickly.
For many commonly used non-differentiable functions, such as ||·||p, this can be done. Additionally,
one can appropriately choose the prox function d(y) to allow for easier computation of y(x). The most

common setting is d(y) = 1
2 ||y||

2
, but there exists many other functions satisfying the assumptions to

make use of.
Assuming that the above discussion is not an issue, we have seen that NEST-S produces an ε−solution

in O(1/ε) iterations which is much faster than the O(1/ε2) guaranteed by the subgradient method. Let
us take a look at a numerical example. Consider the following optimization problem

F∗ := min
x∈X

f(x) + h(x)

where X = B(0, r), f(x) = 1
2 〈Qx, x〉 − 〈q, x〉, h(x) = ||Kx− b||. Here, r, Q, q and K are taken from [5],

but are not of specific interest. From this formulation, we see that both f and h are continuous, convex
functions, but h is not differentiable. Thus, if we are to apply AGD to solve the optimization problem,

1example taken from [4]

4

we must first smooth h using Nesterov’s technique. We will use the Fenchel representation in (7). Note
that

h∗(y) = sup
x∈Rn

〈x, y〉 − ||x− b||

= 〈b, y〉+ sup
x∈Rn

〈x, y〉 − ||x||

= 〈b, y〉+ g∗(y)

where g∗(y) is the convex conjugate of g(x) = ||x||. We know from class that g∗(y) =

{
0 ||y|| ≤ 1

∞ ||y|| > 1
so

h∗(y) = 〈b, v〉 with domh∗ = Y := {y : ||y|| ≤ 1}. Since domh∗ is compact the Fenchel representation

h(x) = max
y∈Y
〈y, x〉 − 〈b, y〉

satisfies (4). Thus, to continue with AGD, we simply need to compute y(x) for any x and µ > 0. The
problem can be reformulated as

y(x) = argmax
y∈Y

〈x− b, y〉 − µ

2
||y||2

= argmin
y∈Y

〈b− x, y〉+
µ

2
||y||2

= argmin
y∈Y

∣∣∣∣∣∣∣∣y − 1

µ
(x− b)

∣∣∣∣∣∣∣∣2
by completing the square. This is simply a projection onto Y . Moreover, y(x) = (x−b)/µ

||(x−b)/µ|| . With an

analytical solution to y(x), we can apply AGD to solve our problem. Numerical experiments are shown
in Figure 3. Notice that although the algorithms are initially comparable, to achieve any reasonable
accuracy ε > 0, NEST-S is far more desirable.

Bibliography

[1] Y. E. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, Massachusetts, 2004.

[2] R Tyrrell Rockafellar. Convex analysis. Princeton University Press (Princeton, NJ), 1970.

[3] Stephen Boyd Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[4] Niao He. Smoothing techniques.

[5] Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for convex-
concave bilinear saddle-point problems. Mathematical Programming, pages 1–35, 2019.

5

	Introduction
	Nesterov's Smoothing
	Concluding Remarks and Numerical Experiments

