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Binary Logistic Regression (BLR)
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Introduction

Binary Logistic Regression

N
. b2l
min ;:1 2 log (1 + exp ( biy(ai x + )’)))

xERM, yeR

o a/ represent rows of data matrix A € RV*"

by are the entries of the response vector b € {—1,1}"

1

@ Assumes P(b(,) =1 | a,T,X,y) = m

Model formulated by maximum likelihood estimation
n>>1
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Introduction

Can we work with something cleaner? Define

h(u) = he(u) = i2 log (2 cosh <u§~)>)

i=1

for any u € R¥.

Gho = _min_oas(x,y) = h(Ax+y1) = b (Ax + y1)

x€ERM,y

Our goal: compute an e-solution (&, §) such that ¢a (X, ) — ¢4 < € as quickly as
possible.
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Goal

Compute an e-solution to

* o - o _ T
$ap = min_ dan(x,y) = h(Ax +y1) — b"(Ax +y1)

as quickly as possible.

o ¢ab(x,y) has the following properties:

— ¢a,b(x,y) is convex
— Voa b(x,y) is Lipschitz continuous

@ Solving for ¢}, , is smooth, convex, and unconstrained optimization

o Can relax to just solving smooth, convex problems
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Smooth Convex Optimization

Smooth Convex
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Smooth Convex Optimization

Goal

Compute an e-solution to
f* := min f(x)

xERN

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||[Vf(x) — Vf(y)|| < L||x—y||,¥x,y € R".

o Large class of problems
o Examples include
— Regularized Linear Least Squares

1
) =5 llAx - bl|? + Al[x|2

— Quadratic Programming
1
f(x) = EXTAX —b"x,A>=0

o What is a first order method?

— any method M such that M accesses the first order information of f through a
deterministic oracle Of : R" — R" x R” with O¢(x) = (f(x), Vf(x)) for x € R"
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Smooth Convex Optimization

Algorithm 1 Nesterov's accelerated gradient descent (NAGD)

Select parameters v, € (0,1]",7x. Choose xo € R". Set yo = Xo.
for k=1,...,N do

2z =(1 — k) Yk—1 + YrXk—1

xx =argmin(Vf(z), x) + % [|xk—1 — x||§
x€ERN

Vi =(1 = ) yr—1 + Vixu

end for
Output yn.

o Depends on parameters i, 1.

o Different parameter settings = different performance
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Smooth Convex Optimization

Goal
Compute an e-solution to
f*:= min f(x)
xERM

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||Vf(x) — VFf(y)|| < L||x —yl||,Vx,y € R".
If we set vx =1 and nx = L in NAGD, then
o xx = (Xk—1 — %Vf(xk,l))
o NAGD reduces to gradient descent (GD)
L||x

o f(w) — F(x7) < Lol here gy = S 0 /(N + 1)
o Computes an e-solution in O(1/¢) iterations

GD provides an upper complexity bound of O(1/¢) for smooth convex optimization. Is
this "as quickly as possible?"
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Smooth Convex Optimization

Goal
Compute an e-solution to
f* := min f(x)
x€ERN
as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||Vf(x) — VFf(y)|| < L||x —y]||,¥x,y € R".
If we set v, = ﬁ and 77k = Z—L in NAGD, then

o Flym) — F(x") < gty lIx* = oll?

o Computes an e-solution in O(1/4/¢) iterations
o Asymptotically better than gradient descent

o Called Optimal Gradient Descent (OGD)

OGD provides an upper complexity bound of O(1/+/¢) for smooth convex optimization.
Is this "as quickly as possible?"
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Lower Complexity Bound

Goal

Compute an e-solution to
f*:= min f(x)
xERM

as quickly as possible.

What does "as quickly as possible" mean?

How can we evaluate the worst-case performance of an algorithm?

Search for some "difficult" problem instance such that said algorithm struggles to
solve it.

@ A worst case problem instance for a class of algorithms provides a lower complexity
bound.
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Complexity Bounds
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Algorithm Class Comparison

Goal

Compute an e-solution to

7 o= min f(x)

as quickly as possible.

o Why exactly do we consider iterative first order method?

o Consider a simple problem class: quadratic programming

min leAx — bTx,A >0
xERN 2

— second order methods (Newton's) require 1 iteration of O(n3) (requires linear system
solve) flops

— first order methods require t iterations of O(n?) flops

— If t < n, i.e. when n is large, first order seems best
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Smooth Convex Optimization

Goal
Compute an e-solution to

7 o= min f(x)

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||[Vf(x) —Vf(y)|| < L||x—yl||,Vx,y € R".
Let's review

o Binary logistic regression is in the class of smooth convex optimization problems

o Optimal gradient descent solves smooth convex optimization problems in O(1/+/¢)
iterations

o We hope to find a problem instance such that no first order method can solve it
faster than O(1/+/¢)
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Lower Complexity Bound Goal

Smooth Convex

O(1/ve)

O(1/ve)?
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Complexity Bounds

In [1], Nemirovski showed that the lower complexity bound of solving

o _ 1o, 7
= min f(x) = Qan(x) := 5% Ax — b’ x
via first order deterministic methods was O(1/+/€), i.e. OGD is indeed optimal.
Key ideas from Nemirovski:

o Construct a worst-case instance of f such that any first order method M struggles
to solve it.

o Find an "equivalent" function g such that all iterates x; generated by M applied to
g lie in a particular subspace.

o Show that the error at step t of M applied to g is at least as large as the proposed
lower complexity bound.
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Nemivroski+Nesterov Proof Sketch

Key Idea

Construct a worst-case instance of f such that any first order method M struggles to
solve it.

2 -1
-1 2 -1
o A4k+3 =
-1 2 -1
-1 2
A 0
L [ Aak+3 nxcn L
°A:Z<o 0>6vab=ze1
° min  Qas(x) — min Qan(x) > M
x€Kapi1(Ab) x€Rn 7 = 128(k+1)

o Here, K, (A, b) = span{b,Ab,..., A" 'b}

If each iterate x; € Kak+1(A, b), we are donel!
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Nemirovski+Nesterov Proof Sketch

Key Idea

Find an "equivalent" function g such that all iterates x; generated by M applied to g lie
in a particular subspace.

o If x; & Kak+1(A, b), we can rotate the problem, i.e. find g(x) := f(Ux), such that
— xt € UTK2411(A, b) for some orthogonal matrix U satisfying Ub = b
T o ay Quraup() = min, Qurayp() = i, ) Qas() = mip Qas(x)

o If g and f have the same first order information at the oracle query points, then M
"cannot differentiate" between the two

o Utilizes an important lemma
Lemma

Let X and Y be two linear subspaces satisfying X C' Y C RP. Then for any y € R”,
there exists orthogonal matrix V' such that

Vy € Y and Vx = x, Vx € X
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Nemirovski+Nesterov Proof Sketch

Key Idea

Show that the error at step t of M applied to the rotated objective function is at least as
large as the proposed lower complexity bound.

Theorem

For any first order iterative method M and iterate k < ";3, there exists some smooth

convex function g : R" — R with L-Lipschitz gradient such that x, generated by M
satisfies

g(x) — min g(x) > M
cein 8V = gk 1 1)

We conclude OGD is optimal for smooth convex optimization
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Nemirovski vs. Nesterov Technique

Nemirovski:

o Constructed A by characterizing its spectrum
—~ WLOG may assume A is diagonal since for A= VTAV,

Xr'g]i}?n%xTAx —bTx= Xrg]ilg’%xTVT/\Vx —bTVvTVvx = yng]ilgéﬂ/\y — by
o Enforced iterates in Krylov subspace using rotation/orthogonal invariance trick
o Pros: Rigorous, general
o Cons: Hard to follow, diagonalization may not hold in other setting

Nesterov:
o Constructed A using tridiagonal form
o Enforce iterates in Krylov subspace using linear span assumption (shown in [2])
o Pros: Easy to follow

o Cons: Requires assumption
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Lower Complexity Extensions

o There exists the following other available lower complexity bound results on
deterministic first order methods for convex optimization * := minf(x).
X

— when f is convex, the lower complexity bound is O(1/¢2) [1, 2]
— when f is convex, nonsmooth with bilinear saddle point structure, the lower complexity
bound is O(1/¢) [3]
— when f is strongly convex, smooth the lower complexity bound is O(log(1/¢)) [2, 4]
o What about binary logistic regression?

— can we do better than smooth convex optimization?
— can we adapt Nemirovski/Nesterov's idea to binary logistic regression?
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Lower Complexity Bound Summary

Smooth Convex
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BLR Lower Complexity Bound

o Extend this result to binary logistic regression problems

o Construct a worst-case dataset for solving binary logistic regression that requires
O(1/+/e) first order oracle calls

o These worst-case constructions will satisfy y* = 0. Consequently, it suffices to solve
the logistic model with homogeneous linear predictor

Ia,p(x) = h(Ax) — b Ax

and corresponding problem

.
Iap = min Ia,b(x).

o We assume that
— (initially) the iterates of a deterministic first order method M satisfy

xt € span{Vf(xo),..., VFf(xe—1)}
- x0=0

— X¢'s are inquiry points and approximate solutions
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BLR Lower Complexity Bound

Binary Logistic Regression

b 1= min la,p(x) = h(Ax) - b" Ax

-1 1
1 1 20 Wi
o Given any k, let W := ERV A= _ggvv‘\;k €

— k
-1 1 2¢ Wi

1

R¥*XK by = ( 1;"}() €ER* and o > (¢ >0.
-1

o Define fi(x) := h(Akx) — b{ (Akx) and ¢x(x,y) := h(Axxsylk) — bl (Arxx + y1k)

o x* =argmin f, = c(1,2,..., k)"
xERK

o f = fi(x*) = 8klog2 + 4k (log cosh(oc) + log cosh(¢c) — (o — ¢)c)
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Properties of W) and A

Objective Functions

[

Define for any positive integers t and k
Xi i i= span{ex—ti1,k,
and

Ve = span{evax; ..., €4k, €14k,

Wilk = exx, Al bk € Xk
WtU
—t

For x = (Ok_t) € Xk, Wix = (
u Ok

A= agwy, | 0 bk= (
2¢ Wy

—2¢Wj 12

—1ai

)

...,ek,k},Vk, 1<t<k

s CkttAky - o5 €3k+1,4ky - - s e3k+t,4k}-

, and Axx, Vh(Akx) € Ve k

v Ok—t—1
o Fory = <0k t) EX i Wev=| =V | € Xtk
- WtV

Ox—¢
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Properties of W) and A,

Linear Span Assumption

When M is applied to solve fx, the iterates x; generated by M satisfy

xe € span{Vfi(x0), ..., Vi(xe—1)}

Recall: Al by € Xk

Recall: Al Vh(Aix) € Xer1k

Vhi(x) = AL Vh(Akx) — Al bk € Xep1x

The linear span assumption gives x; € X} i "for free"
Can compute Xren)iczkﬁ((x) — =8k —t)log2+ " — 1
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BLR Lower Complexity Bound

Objective Function

* - L - _ T
b = min lab(x) == min h(Ax) — b" Ax

Theorem

Let M be a deterministic first order method applied to solve binary logistic regression
whose iterates satisfy the linear span assumption. For any iteration count M and
constants n = 2T, N = 8T, there exist data matrix A € RV*", response vector

b e {—1,1}", and corresponding objective function la, such that the T-th iterate
generated by M satisfies

3[JAIP Ix0 — x|
22T +1)(4T +1)

la(x7) — lap(x™) > 3

and

1
lbr = x*1* > 5 llxo = x|
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BLR Lower Complexity Bound

Key ideas from Nemirovski:

o Construct a worst-case instance of f such that any first order method M struggles
to solve it. Done via Ak, Wk, and bx similar to Nesterov

o Find an "equivalent" function g such that it shares the first order information of f
and all iterates x; generated by M applied to g lie in a particular subspace. Done
using fx via linear span assumption

o Show that the error at step t of M applied to g is at least as large as the proposed
lower complexity bound. Done in the same way as Nemirovski

Do we need the linear span assumption, i.e. can we find a related function g similar to
Nemirovski?
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BLR Lower Complexity Bound

Lemma

For Ak, by specified previously, any first order method M, and some t < % there exists
an orthogonal matrix U, € R**¥ satisfying
o U:Al b = Al by

o When M is applied to solve Ia, u, b, the iterates xo, ..., x; satisfy
T .
xi € Uy Xojy16, i=0,...,t.

o Idea: use successive instances of the rotation lemma to find matrices that fix all
previous iterates and places the next iterate in a larger subspace

o Show that a first order algorithm "can not tell a difference" of the original problem
and the rotated problem, i.e. they have the same first order information
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BLR Lower Complexity Bound

Objective Function

[ip 1= min as(x) 1= min h(Ax) - b" Ax

Theorem

(Presented in [5]) For any first order method M and fixed iteration number T with
corresponding constants N = 10T + 8,n = 4T + 2, there always exists data matrix
A € RY*" and response vector b € RN such that when M is applied to solve la,b, the
T-th iterate satisfies

3 A lIxo — x*|?

6(4T +3)(8T +5)

lab(x7) = lap > 1

and

1
lIxr = 7|17 > 3 lIxo — x|
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Lower Complexity Bound Summary

Smooth Convex
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Concluding Remarks

o Conditions

— First order oracle assumption
— Large dimensionality assumption

o Unconstrained quadratic optimization of the form

min leAx —b'x
xERN 2

has a lower bound complexity of O(1/+/€)

— OGD is optimal for smooth convex optimization
— CG is optimal for unconstrained quadratic optimization

o (Homogeneous) Binary logistic regression of the form
. T
Xné]l}g'h(Ax) b’ (Ax)

has a lower bound complexity of O(1/4/€)

— OGD is optimal for homogeneous binary logistic regression
— OGD is optimal for inhomogeneous binary logistic regression
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