
ar
X

iv
:1

90
8.

04
09

1v
1 

 [
m

at
h.

O
C

] 
 1

2 
A

ug
 2

01
9

Logistic Regression Worst-Case Dataset

Some Worst-Case Datasets of Deterministic First-Order

Methods for Solving Binary Logistic Regression

Yuyuan Ouyang yuyuano@clemson.edu

School of Mathematical and Statistical Sciences

Clemson University

Clemson, SC 29634, USA

Trevor Squires tsquire@clemson.edu

School of Mathematical and Statistical Sciences

Clemson University

Clemson, SC 29634, USA

Editor:

Abstract

We present in this paper some worst-case datasets of deterministic first-order methods
for solving large-scale binary logistic regression problems. Under the assumption that the
number of algorithm iterations is much smaller than the problem dimension, with our
worst-case datasets it requires at least O(1/

√
ε) first-order oracle inquiries to compute an

ε-approximate solution. From traditional iteration complexity analysis point of view, the
binary logistic regression loss functions with our worst-case datasets are new worst-case
function instances among the class of smooth convex optimization problems.

Keywords: Binary Logistic Regression, First-Order Methods, Lower Complexity Bound

1. Introduction

The following notations will be used throughout this paper. We denote natural logarithm by
log(·). For any positive integer k, we use 0k and 1k to denote vectors of all zeros and ones,
respectively. When the dimension k is evident, we may remove the subscript and simply use
0 and 1. We use et,k to denote the t-th standard basis vector in Rk: e⊤t,k = (0⊤

t−1, 1,0
⊤
k−t)

⊤.

For any vector u, we use u(i) to denote the i-th component of u. The norm notation ‖ · ‖
is used for the Euclidean norm of a vector and the spectral norm of a matrix.

The main research questions of this paper are the following:

• For any deterministic first-order methods, what is the best possible computational

performance on solving large-scale binary logistic regression problems?

• For any deterministic first-order methods, what is their respective worst-case datasets

of large-scale binary logistic regression problems that yield their worst possible compu-

tational performance?

Note that we will focus on providing an answer to the second question, since it will lead
natural to an answer to the first question. We describe the binary logistic regression prob-
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lems, and provide the definitions of “deterministic first-order methods” and “computational
performance” in the sequel.

In this paper, we use the following description of binary logistic problems. Given any
data matrix A ∈ RN×n and response vector b ∈ {−1, 1}N , the binary logistic regression
problem is a nonlinear optimization problem that minimizes objective function

min
x∈Rn,y∈R

ΦA,b(x, y) := h(Ax+ y1)− b
⊤(Ax+ y1), (1.1)

where for any u ∈ Rk, h is defined by

h(u) ≡ hk(u) :=
k
∑

i=1

2 log

[

2 cosh

(

u(i)

2

)]

=
k
∑

i=1

2 log

[

exp

(

u(i)

2

)

+ exp

(

−u(i)

2

)]

.

(1.2)

Here cosh is the hyperbolic cosine function. For convenience we remove the subscript k in
the definition of h and allow the variable vector of h to be of any dimension. Using a

⊤
i to

denote the i-th row of A, from (1.1) and (1.2) we have

Φ(x, y) =
N
∑

i=1

2 log

[

exp

(

a
⊤
i x+ y

2

)

+ exp

(

−a
⊤
i x+ y

2

)]

− b(i)
(

a
⊤
i x+ y

)

=

N
∑

i=1

2 log

[

exp

(

b(i)(a⊤
i x+ y)

2

)

+ exp

(

−b(i)(a⊤
i x+ y)

2

)]

− b(i)
(

a
⊤
i x+ y

)

=
N
∑

i=1

2 log
[

1 + exp
(

−b(i)(a⊤
i x+ y)

)]

,

which is a commonly used form of binary logistic regression problems with parameter vector
x and intercept y. Here in the second equality we use the facts that cosh is an even function
and b(i) ∈ {−1, 1}. Note that we can build an analogy between logistic and least squares
problems through the formulation (1.1): if h(·) := ‖ · ‖2/2 we have a least squares problem
immediately. In fact, such analogy has been exploited in Bach (2010) in the analysis of
statistical properties of logistic regression.

In this paper, we will make an simplification and assume that we know the value of
intercept y∗ in an optimal solution (x∗, y∗). Problem (1.1) then simplifies to a problem of
estimating the parameter vector x from

l∗A,b := min
x∈Rn

lA,b(x) := ΦA,b(x, y
∗).

Indeed, in our designed worst-case dataset,we can show that the intercept y∗ = 0. As a
consequence, it suffices to solve a logistic model with homogeneous linear predictor:

l∗A,b := min
x∈Rn

lA,b(x) :=h(Ax)− b
⊤Ax

=

N
∑

i=1

2 log
[

1 + exp
(

−b(i)(a⊤
i x)

)]

.
(1.3)
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The term “deterministic first-order method” is defined by the following oracle descrip-
tion: we say that an iterative algorithm M for convex optimization minx∈Rn f(x) is a de-
terministic first-order method if it accesses the information of objective function f through
a deterministic first-order oracle Of : Rn × Rn, such that Of (x) = (f(x), f ′(x)) for any
inquiry x, where f ′(x) is a subgradient of f at x. Specifically, M can be described by a
problem independent initial iterate x0 and a sequence of rules {It}∞t=0 such that

xt+1 = It(Of (x0), . . . ,Of (xt)), ∀t ≥ 0. (1.4)

Without loss of generality, we can assume that x0 = 0. We also assume that the dimension
of the parameter vector x is large and we can only afford t ≪ n oracle inquiries.

The computational performance of M is evaluated through its solution accuracy f(x̂)−
f∗ or ‖x̂ − x

∗‖, in which x̂ is an approximate solution computed by M. Without loss
of generality, we can assume that xt’s are both inquiry points to the oracle O and the
approximate solution computed by M.

1.1 Related Work

There had been many existing deterministic first-order algorithms that can be applied to
solve (1.3). For example, applying Nesterov’s accelerated gradient method Nesterov (2004),
it is known that it takes at most O(1)(1/

√
ε) oracle inquiries to compute an approximate

solution x̂ to (1.3) such that lA,b(x) − l∗A,b ≤ ε. Here O(1) is a constant independent of
ε. Such result is known as the upper complexity bound. Upper complexity bounds depict
achievable computational performance on solving an problem.

Our research question described at the beginning of this section is focusing on the lower
complexity bound of a problem, namely, the performance limit of deterministic first-order
methods. For convex optimization problems f∗ := minx f(x), the lower complexity bound
is concerned with the least number of inquiries to the deterministic first-order oracle in
order to compute an ε-approximate solution x̂ such that f(x̂)− f∗ ≤ ε. In the following we
list the available lower complexity bound results on deterministic first-order methods for
convex optimization f∗ := minx f(x).

• When f is convex (possibly nonsmooth), the lower complexity bound is O(1)(1/ε2)
Nemirovski and Yudin (1983); Nesterov (2004); Guzmán and Nemirovski (2015); Woodworth and Srebro
(2016).

• When f is weakly smooth convex with parameter ρ (see the definition of weakly
smooth in Juditsky and Nesterov (2014)), the lower complexity bound isO(1)(1/ε2/(1+3ρ))
Juditsky and Nesterov (2014); Guzmán and Nemirovski (2015).

• When f is convex nonsmooth with bilinear saddle point structure, the lower complex-
ity bound is O(1)(1/ε) Ouyang and Xu (2019).

• When f is smooth convex, the lower complexity bound is O(1)(1/
√
ε) Nemirovski

(1992); Nesterov (2004); Guzmán and Nemirovski (2015); Drori (2017); Woodworth and Srebro
(2016); Carmon et al. (2017a,b); Diakonikolas and Guzmán (2018).

• When f is strongly convex smooth, the lower complexity bound is O(1) log(1/ε)
Nesterov (2004); Woodworth and Srebro (2016).
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Two remarks are in place for the above list of lower complexity bounds. First, all
the lower complexity bounds have been demonstrated to match available upper complexity
bounds, namely, there exists available deterministic first-order algorithms that achieves the
lower complexity bounds. Such algorithms are known as optimal algorithms, since the lower
complexity bounds provide the verification that their respective theoretical computational
performance would not be improvable anymore. Second, we can observe from the above list
that the “smaller” the problem class is, the better lower complexity bounds could be. For
example, the class of smooth convex optimization problems is a subclass of general convex
optimization problems, hence it is possible to expect an algorithm with O(1/

√
ε) upper

complexity rather than O(1/ε2).

1.2 Motivation and main results

Our research question can be motivated by the second remark above, i.e., a subclass might
yield better lower complexity bounds. Note that the class of binary logistic regression
problems is a subclass of the smooth convex problem class. Is it possible to design algo-
rithms that targets solely on logistic regression, and performs better than the O(1)(1/

√
ε)

complexity bounds for smooth convex optimization? Unfortunately, such question has not
yet been answered in the literature. Although there had been lower complexity bounds
O(1)(1/

√
ε) on smooth convex optimization (see Section 1.1), the worst-case instance func-

tions provided for smooth convex optimization are either based on convex quadratic func-
tions Nemirovski (1992); Nesterov (2004); Drori (2017); Woodworth and Srebro (2016);
Carmon et al. (2017a,b) or smoothing (through infimal convolution) of maximum of affine
functions Guzmán and Nemirovski (2015); Diakonikolas and Guzmán (2018).

The above discussion is based on the traditional perspective of complexity analysis of
convex optimization, namely, finding worst-case functions among the problem class and
explore the performance limits of algorithms. It is important to point out that our research
question can also be viewed from one other perspective. In data analysis practice, we will
usually designing algorithms that are tailored for specific models. Consequently, we are
interested at exploring the performance limit of algorithms with respect to the worst-case

dataset. From this perspective, our research question asks what the worst-case dataset
that yields the worst performance of any deterministic first-order method. Note that the
two aforementioned perspectives are equivalent; however, the latter one offers a more data-
oriented argument.

In this paper, we describe some worst-case datasets of binary logistic regression prob-
lems, such that for any first-order methods, it requires at least O(1)(1/

√
ε) first-order oracle

inquiries to obtain an ε-approximate solution. Such datasets can be used as certificates of
optimal deterministic first-order algorithms for binary logistic regression. Also, from the
perspective of traditional complexity analysis, our results also provide new worst-case func-
tions for smooth convex optimization.

In Section 2, we describe the construction of a worst-case dataset for deterministic first-
order method that satisfy a mild assumption (see Assumption 2.1 below). In Section 3, we
provide worst-case datasets for any given deterministic first-order method.
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2. Worst-Case Dataset Under Linear Span Assumption

In this section, we make the following simple assumption regarding the iterates produced
by a deterministic first-order method M:

Assumption 2.1 The iterate sequence {x0,x1, . . .} produced by M satisfies

xt ∈ span{∇f(x0), . . . ,∇f(xt−1)}, ∀t ≥ 1.

Recall that we have already made two assumptions in Section 1 on M without loss of
generality, namely, that x0 = 0 and that xt is both the inquiry point and the output of
approximate solution. By the above assumption, the new iterate M produces always lie
inside the linear span of past gradients. Throughout this paper, we refer to Assumption
2.1 as the linear span assumption. Such linear span assumption, in the first look, does not
seem to be one that can be made without loss of generality. However, we would like to
emphasize here that the purpose of introducing the linear span assumption is only for us to
demonstrate the lower complexity bound derivation in a straightforward manner; we will
show in Section 3 that the linear span assumption can be removed, using the technique in
the seminal work Nemirovski (1992).

2.1 A Special Class of Datasets

We describe our construction of a special class of datasets for binary logistic regression.
Such datasets will be used throughout this paper to construct worst-case datasets for binary
logistic regression. Suppose that σ > ζ > 0 are two fixed real numbers. Given any positive
integer k, denote

Wk :=















−1 1
−1 1

. .
.

. .
.

−1 1
1















∈ Rk×k (2.1)

and

Ak :=









2σWk

−2ζWk

−2σWk

2ζWk









∈ R4k×k, bk :=









1k

1k

−1k
−1k









∈ R4k. (2.2)

We then denote functions fk : Rk → R and Φk : Rk+1 → R by

fk(x) := h(Akx)− b
⊤
k Akxk and Φk(x, y) := h(Akx+ y1k)− b

⊤
k (Akxk + y1k). (2.3)

Comparing (2.3) with previous descriptions of lA,b and ΦA,b in (1.1) and (1.3) respectively,
fk and Φk are clearly binary logistic regression objective functions with data matrix Ak

and response vector bk: we are using logistic regression to train a classifier for two datasets
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whose entries have opposite signs. Recall that σ > ζ > 0; this assumption is to avoid
duplicate data entries. Note that

‖Aku‖2 =8(σ2 + ζ2)‖Wku‖2

=8(σ2 + ζ2)

[

(

u(k) − u(k−1)
)2

+ . . .+
(

u(2) − u(1)
)2

+
(

u(1)
)2
]

≤16(σ2 + ζ2)

[

(

u(k)
)2

+
(

u(k−1)
)2

+ . . . +
(

u(2)
)2

+
(

u(1)
)2

+
(

u(1)
)2
]

≤32(σ2 + ζ2)‖u‖2,

and consequently

‖Ak‖ ≤ 4
√

2(σ2 + ζ2). (2.4)

In the following lemma, we describe the optimal solutions that minimizes fk and Φk

respectively. By the definition of fk in (2.3) and noting the convexity of binary logistic
regression problems, it suffices to solve

∇fk(x) = A⊤
k ∇h(Akx)−A⊤

k bk = 0. (2.5)

Noting the definition of h in (1.2), we have

∇h(u) = tanh
(

u

2

)

:=

(

tanh

(

u(1)

2

)

, . . . , tanh

(

u(k)

2

))⊤

, ∀u ∈ Rk, ∀k. (2.6)

Here tanh is the hyperbolic tangent function. Throughout this paper, we will slightly abuse
the notation tanh(u) and allow the scalar function tanh(·) to be applied to any vector u

component-wisely.

Lemma 2.1 For any σ > ζ > 0, there always exists c > 0 that satisfies

σ tanh(σc) + ζ tanh(ζc) = σ − ζ. (2.7)

Moreover,

x
∗ := c(1, 2, . . . , k)⊤ (2.8)

is the unique optimal solution to problem

f∗
k := min

x∈Rk
fk(x) (2.9)

with

f∗
k = 8k log 2 + 4k {log cosh(σc) + log cosh(ζc)− (σ − ζ)c} . (2.10)

In addition, (x∗, 0) is the unique optimal solution to minx∈Rn,y∈RΦk(x, y).

6
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Proof Note that there always exists c > 0 that satisfies (2.7) since the function r(c) :=
σ tanh(σc) + ζ tanh(ζc) − σ + ζ is continuous with r(0) = −σ + ζ < 0 and limc→∞ r(c) =
2ζ > 0.

By the definitions of Wk and x
∗ in (2.1) and (2.8), we observe that Wkx

∗ = c1k and
Wk1k = ek,k. Using this observation and the descriptions of ∇h, Ak, and bk in (2.6) and
(2.2) respectively, and noting that tanh is an odd function and is assumed to apply to any
vector component-wisely, we have

∇h(Akx
∗) = tanh









1

2









2σc1k

−2ζc1k
−2σc1k

2ζc1k

















=









tanh(σc)1k

− tanh(ζc)1k

− tanh(σc)1k

tanh(ζc)1k









, (2.11)

A⊤
k ∇h(Akx

∗) =4[σ tanh(σc) + ζ tanh(ζc)]ek,k,

A⊤
k bk =2(σ − ζ + σ − ζ)Wk1k = 4(σ − ζ)ek,k. (2.12)

Using the above results, the description of ∇f in (2.5), and the relation (2.7) that c satisfies,
we have ∇fk(x

∗) = 0. Noting that binary logistic loss functions are strictly convex, we
conclude that x∗ is the unique minimizer of fk. Recalling the definition of h in (1.2), noting
that cosh is an even function, and using the computation of A⊤

k bk in (2.12), we have

f∗
k =fk(x

∗) = h(Akx
∗)− (x∗)⊤A⊤

k bk = h(Akx
∗)− 4k(σ − ζ)c

=2k {log [2 cosh(σc)] + log [2 cosh(−ζc)] + log [2 cosh(−σc)] + log [2 cosh(ζc)]} − 4k(σ − ζ)c

=8k log 2 + 4k {log cosh(σc) + log cosh(ζc)− (σ − ζ)c} .

Furthermore, by the descriptions of bk and ∇h(Akx
∗) in (2.2) and (2.11) respectively,

computing the partial derivative of Φ in (2.3) with respective to y at 0, we have

∂

∂y

∣

∣

∣

∣

y=0

Φk(x
∗, y) = 1⊤k ∇h(Akx

∗)− b
⊤
k 1k = 0.

Noting also that ∇xΦk(x
∗, 0) = ∇fk(x

∗) = 0, we conclude that (x∗, 0) is the unique
minimizer of the strictly convex binary logistic loss Φk(x, y).

2.2 Lower Complexity Bound Under Linear Span Assumption

In this section, we study the lower complexity bound of deterministic first-order methods
for solving the logistic regression problem (2.9), under the linear assumption described in
Assumption 2.1.

Lemma 2.2 Suppose that k and t are fixed positive integers such that t ≤ k. Define

Kt,k := span{ek−t+1,k, . . . ,ek,k}, ∀k,∀1 ≤ t ≤ k. (2.13)

7
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Then for all x ∈ Kt,k, we have Akx,∇h(Akx) ∈ Jt,k and A⊤
k ∇h(Akx),∇fk(x) ∈ Kt+1,k,

where

Jt,k := span{e1,4k, . . . ,et,4k,ek+1,4k, . . . ,ek+t,4k,e2k+1,4k, . . . ,e2k+t,4k,e3k+1,4k, . . . ,e3k+t,4k}.
(2.14)

Moreover,

min
x∈Kt,k

fk(x) = 8(k − t)log2 + min
u∈Rt

ft(u). (2.15)

Proof Fix x ∈ Kt,k. By (2.13) we have x
⊤ = (0⊤

k−t,u
⊤)⊤ for some u ∈ Rt. Thus by the

definition of Wk in (2.1),

Wkx =

(

−1 Wt

Wk−t

)(

0k−t

u

)

=

(

Wtu

0k−t

)

.

Using the above result, the descriptions of Ak and ∇h in (2.2) and (2.6) respectively, and
the definition of Jt,k in (2.14), we have

Akx =

























2σWtu

0k−t

−2ζWtu

0k−t

−2σWtu

0k−t

2ζWtu

0k−t

























∈ Jt,k, ∇h(Akx) =

























tanh(σWtu)
0k−t

− tanh(ζWtu)
0k−t

− tanh(σWtu)
0k−t

tanh(ζWtu)
0k−t

























∈ Jt,k. (2.16)

Also, note that for all v ∈ Rt, the definition of Wk in (2.1) results in

W⊤
k

(

v

0k−t

)

= Wk

(

v

0k−t

)

=

(

−1 Wk−t

Wt

)(

v

0k−t

)

=





0k−t−1

−v
(t)

Wtv



 ∈ Kt+1,k.(2.17)

Combining (2.16) and (2.17), and using the definition of Ak in (2.2) we have

A⊤
k ∇h(Akx) =2σW⊤

k

(

tanh(σWtu)
0k−t

)

− 2ζW⊤
k

(

− tanh(−ζWtu)
0k−t

)

− 2σW⊤
k

(

− tanh(σWtu)
0k−t

)

+ 2ζW⊤
k

(

tanh(ζWtu)
0k−t

)

∈Kt+1,k.

Using the above result and noting the value of A⊤
k bk in (2.12), we conclude that

∇fk(x) = A⊤
k ∇h(Akx)−A⊤

k bk ∈ Kt+1,k.

8
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To finish the proof it suffices to prove (2.15). By the definition of h in (1.2), the
computations in (2.16), and the setting x

⊤ = (0⊤
k−t,u

⊤)⊤ we have

h(Akx) =
t
∑

i=1

2 log(2 cosh(σWtu)
(i)) + (k − t) · 2 log(2 cosh(0))

+

t
∑

i=1

2 log(2 cosh(−ζWtu)
(i)) + (k − t) · 2 log(2 cosh(0))

+

t
∑

i=1

2 log(2 cosh(−σWtu)
(i)) + (k − t) · 2 log(2 cosh(0))

+

t
∑

i=1

2 log(2 cosh(ζWtu)
(i)) + (k − t) · 2 log(2 cosh(0))

=8(k − t) log 2 + h(Atu).

Also, noting that x⊤ = (0⊤
k−1,u

⊤)⊤, by the description of A⊤
k bk in (2.12) we have

b
⊤
k Akx = 4(σ − ζ)u(t) = b

⊤
t Atu.

Hence we conclude from the definition of fk(x) in (2.3) that fk(x) = 8(k − t) log 2 + ft(u),
and thus (2.15) holds.

As an immediate consequence of the above lemma, in the following we show that the
linear span assumption of a first-order method M will lead to xt ∈ Kt,k when minimizing
fk(x).

Lemma 2.3 Suppose that M is any deterministic first-order method that satisfies Assump-

tion 2.1. When M is applied to minimize fk(x) in (2.3), we have xt ∈ Kt,k for all 1 ≤ t ≤ k.

Proof We prove the t = 1 case first. By Assumption 2.1, x1 ∈ span{∇fk(x0)}. Recalling
the assumption that x0 = 0, we have ∇fk(x0) = ∇fk(0) = −A⊤

k bk, and by the value of
A⊤

k bk in (2.12) we have ∇fk(x0) ∈ span{ek,k}. Noting the definition of Kt,k in (2.13) we
have x1 ∈ K1,k.

Let us use induction and assume that xi ∈ Ki,k for all 1 ≤ i ≤ s < k. By Lemma 2.2,
we have ∇fk(xi) ∈ Ki+1,k for all s. Noting Assumption 2.1 we have

xs+1 ∈ span{∇fk(x0), . . . ,∇fk(xs)} ⊆ Ks+1,k.

Hence the induction is complete and we conclude that xt ∈ Kt,k for all 1 ≤ t ≤ k.

By the description of f∗
k in (2.10), the relation (2.15), and Lemma 2.3, we conclude that

the error of iterate xt in terms of objective function value can be lower bounded by

fk(xt)− f∗
k ≥ min

x∈Kt,k

fk(x)− f∗
k = 8(k − t) log 2 + f∗

t − f∗
k

=4(k − t) [(σ − ζ)c− log cosh(σc)− log cosh(ζc)] .
(2.18)

In the following lemma, we provide a simplification of the above lower bound:

9
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Lemma 2.4 For any real numbers σ and ζ that satisfy 2ζ > σ > ζ > 0, we have

(σ − ζ)c− log cosh(σc)− log cosh(ζc) ≥ c2σ2C(σ/ζ),

where C(σ/ζ) is a universal constant that depends only on the ratio σ/ζ. In particular,

When σ/ζ = 1.3, we have

C(1.3) >
1

2
. (2.19)

Proof By checking its derivative it is easy to verify that the function c 7→ c tanh(c) is
increasing when c > 0. Hence we have

ζc tanh(ζc) ≤ σc tanh(σc), i.e., ζ tanh(ζc) ≤ σ tanh(σc).

Applying the above relation to (2.7), we have

2ζ tanh(ζc) ≤ σ − ζ ≤ 2σ tanh(σc).

Since tanh is an increasing function, we have from the above inequality that

c ∈ [clb, cub], where clb :=
1

σ
arctanh

(

1

2
− ζ

2σ

)

and cub :=
1

ζ
arctanh

(

σ

2ζ
− 1

2

)

(2.20)

in which clb, cub > 0 are well-defined real numbers under the assumption that 2ζ > σ >
ζ > 0. Using the above result, the definition of c in (2.7), and noting that the function
c 7→ c tanh(c)− log cosh c is increasing when c > 0 (by checking its derivative), we have

(σ − ζ)c− log cosh(σc) − log cosh(ζc)

=c2σ2 1

c2σ2
[σc tanh(σc) − log cosh(σc) + ζc tanh(ζc)− log cosh(ζc)]

≥c2σ2C

where

C :=
1

c2ubσ
2
[σclb tanh(σclb)− log cosh(σclb) + ζclb tanh(ζclb)− log cosh(ζclb)] .

Noting (2.20), we can observe that the above constant C depends only on the ratio σ/ζ.
The result (2.19) can then be computed numerically.

We are now ready to state a lower complexity bound of deterministic first-order methods
under the linear span assumption.

Theorem 2.5 Suppose that M is any deterministic first-order method that satisfies the

linear span assumption in Assumption 2.1. Given any iteration number T , there always

exist data matrix A ∈ RN×n and response vector b ∈ {−1, 1}N , where n = 2T and N = 8T ,

10
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such that the T -th approximate solution xT generated by M on minimizing the binary

logistic loss function lA,b in (1.3) satisfies

lA,b(xT )− l∗A,b >
3‖A‖2‖x0 − x

∗‖2
32(2T + 1)(4T + 1)

,

‖xT − x
∗‖2 >

1

8
‖x0 − x

∗‖2,
(2.21)

where x∗ is the minimizer of f .

Proof Let us fix any ζ > 0 and set σ = 1.3ζ in the definition of Ak in (2.2). By (2.4) we
have

‖Ak‖ ≤ 4
√

2σ2 + 2(σ/1.3)2 < 8σ. (2.22)

Let us apply M to minimize fk defined in (2.3) where k = 2T . Recall that M starts at
x0 = 0, and that the minimizer x∗ in (2.8) satisfies

‖x0 − x
∗‖2 = c2

k
∑

i=1

i2 =
c2

6
k(k + 1)(2k + 1). (2.23)

By Lemmas 2.3, 2.4, the lower bound estimate (2.18), and noting that σ > ζ, we have
xt ∈ Kt,k and

fk(xt)− f∗
k ≥ 2(k − t)c2σ2, ∀t ≤ k.

Applying (2.22) and (2.23), the above relation becomes

fk(xt)− f∗
k >

3(k − t)‖Ak‖2‖x0 − x
∗‖2

16k(k + 1)(2k + 1)
. (2.24)

Also, since xt ∈ Kt,k, by the definition of Kt in (2.13) we have x
(1)
t = . . . = x

(k−t)
t = 0.

Noting the description of x∗ in (2.8) and focusing on the difference between xt and x
∗ in

the first (k − t) components, we have

‖xt − x
∗‖2 ≥ c2

k−t
∑

i=1

i2 =
c2

6
(k − t)(k − t+ 1)(2k − 2t+ 1). (2.25)

Specially, setting t = T and recalling that k = 2T , (2.24) becomes

fk(xT )− f∗
k >

3‖Ak‖2‖x0 − x∗‖2
32(2T + 1)(4T + 1)

,

and (2.23) and (2.25) imply that

‖xT − x
∗‖2 ≥ c2

6
T (T + 1)(2T + 1) >

c2

48
· 2T (2T + 1)(4T + 1) =

1

8
‖x0 − x

∗‖2.

We conclude (2.21) from the above two results by setting A := Ak ∈ R8T×2T , b := bk ∈ R8T

and noting the equivalence between lA,b in (1.3) and fk in the above derivation.

11
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3. Lower Complexity Bound for General Deterministic First-Order

Methods

In this section, we extend the lower complexity bound to general deterministic first-order
methods. The derivation is based on the concept of orthogonal invariance in the sem-
inal work Nemirovski (1992), and is organized in a similar way as in Ouyang and Xu
(2019). Note that we can also use the concept of zero-respecting algorithms in Carmon et al.
(2017a,b) to finish the proof.

We will use the following technical lemma which is proved in Ouyang and Xu (2019)
(see Lemma 3.1 within).

Lemma 3.1 Let X ( X̄ ⊆ Rp be two linear subspaces. Then for any x̄ ∈ Rp, there exists

an orthogonal matrix V ∈ Rp×p such that

V x = x, ∀x ∈ X , and V x̄ ∈ X̄ .

Proposition 3.2 For any Ak and bk in the form of (2.2), any deterministic first-order

method M, and any t ≤ (k− 3)/2, there exists an orthogonal matrix Ut ∈ Rk×k that satisfy

the following:

1. UtA
⊤
k bk = A⊤

k bk;

2. When M is applied to minimize the binary logistic regression loss function lAkUt,bk

defined in (1.3), its iterates x0, . . . ,xt satisfy

xi ∈ U⊤
t K2i+1, ∀i = 0, . . . , t.

Proof Let us fix Ak, bk and the method M. Throughout this proof, we will use the
notation

U :=
{

V ∈ Rk×k
∣

∣

∣
V is orthogonal and V A⊤

k bk = A⊤
k bk

}

.

We conduct the proof by induction. The case when t = 0 is trivial by setting U0 to be
the identity matrix. Let us assume that the proposition is true when t = s− 1 < (k− 1)/2.
By the induction hypothesis there exists Us−1 ∈ U such that when M is applied to minimize
lAkUs−1,bk , its iterates satisfy

xi ∈ U⊤
s−1K2i+3,k, ∀i = 0, . . . , s− 1. (3.1)

Suppose that xs is the next iterate. To prove the case when t = s, let us start by finding an
orthogonal matrix Us ∈ U . Noting that s < (k − 1)/2, from the definition of Kt,k in (2.13)
we have

K1,k ( K2,k ( . . . ( K2s+1,k. (3.2)

Thus U⊤
s−1K2s ( U⊤

s−1K2s+1, and by Lemma 3.1 there exists orthogonal matrix V such that

V x = x, ∀x ∈ U⊤
s−1K2s, and V xs ∈ U⊤

s−1K2s+1. (3.3)

12
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Let us define

Us := Us−1V. (3.4)

Noting the descriptions of A⊤
k bk and K1,k in (2.12) and (2.13) respectively, we observe that

A⊤
k bk ∈ K1,k ⊂ K2s,k. Using such observation, by (3.3), (3.4), and the induction hypothesis

Us−1 ∈ U , we have U⊤
s A⊤

k bk = V ⊤U⊤
s−1A

⊤
k bk = A⊤

k bk, hence Us ∈ U . Also, from (3.2) we
have U⊤

s−1K2i+1,k ⊂ U⊤
s−1K2s for all i = 0, . . . , s − 1. Consequently by (3.3) and (3.4) we

have

U⊤
s K2i+1,k = V ⊤U⊤

s−1K2i+1,k = U⊤
s−1K2i+1,k, ∀i = 1, . . . , s − 1. (3.5)

Applying the above relation to (3.1) and also noting xs ∈ U⊤
s K2s+1 from (3.3) and (3.4),

we obtain

xi ∈ U⊤
s K2i+1,k, ∀i = 0, . . . , s. (3.6)

Let us apply M to minimize lAkUs,bk . We will prove that its first s + 1 iterates are
exactly x0, . . . ,xs (the ones computed when M is applied to lAkUs−1,bk). Indeed, we can
make the following observation: if

lAkUs,bk(x) = lAkUs−1,bk(x) and ∇lAkUs,bk(x) = ∇lAkUs−1,bk(x), ∀x ∈ U⊤
s K2s−1,k,(3.7)

then by (3.6) and the oracle assumption (1.4), M would obtain exactly the same first-order
information at x0, . . . ,xs−1 ∈ U⊤

s K2s−1,k from the first-order oracle when minimizing either
lAkUs,bk or lAkUs−1,bk . Therefore, if (3.7) holds, then M produces exactly the same iterates
x0, . . . ,xs when minimizing either lAkUs,bk or lAkUs−1,bk . Consequently, noting that Us ∈ U
and (3.6) we obtain the results of the t = s case by choosing U = Us and complete the
induction.

To finish the induction proof it suffices to prove (3.7). Let us fix any x ∈ U⊤
s K2s−1,k.

By (3.3) and (3.5) we have x ∈ U⊤
s−1K2s−1,k. Noting (3.3) and that Us−1, Us ∈ U , we obtain

the following relations:

Usx = Us−1V x = Us−1x ∈ K2s−1,k and U⊤
s A⊤

k bk = A⊤
k bk = U⊤

s−1A
⊤
k bk. (3.8)

Moreover, noting that Us−1x ∈ K2s−1,k, applying Lemma 2.2 we have A⊤
k ∇h(AkUs−1x) ∈

K2s,k, and hence by (3.3) we observe that V ⊤U⊤
s−1A

⊤
k ∇h(AkUs−1x) = U⊤

s−1A
⊤
k ∇h(AkUs−1x).

Using such observation, recalling the definition of lA,b in (1.3), and noting the relations in
(3.8), we conclude that

lAkUs,bk(x) =h(AkUsx)− x
⊤U⊤

s A⊤
k bk = h(AkUs−1x)− x

⊤U⊤
s−1A

⊤
k bk = lAkUs−1,bk(x),

∇lAkUs,bk(x) =U⊤
s A⊤

k ∇h(AkUsx)− U⊤
s A⊤

k bk = V ⊤U⊤
s−1A

⊤
k ∇h(AkUs−1x)− U⊤

s−1A
⊤
k bk

=U⊤
s−1A

⊤
k ∇h(AkUs−1x)− U⊤

s−1A
⊤
k bk = ∇lAkUs−1,bk(x).

Hence (3.7) is proved.
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Theorem 3.3 Suppose that M is any deterministic first-order method. Given any iteration

number T , there always exists data matrix A ∈ RN×n and b ∈ RN , where n = 4T + 2 and

N = 16T + 8, such that the T -th approximate solution xT generated by M on minimizing

the binary logistic regression loss function lA,b in (1.3) satisfies

lA,b(xT )− l∗A,b ≤ 3‖A‖2‖x0 − z
∗‖2

32(4T + 3)(8T + 5)

‖xT − z
∗‖2 >1

8
‖x0 − z

∗‖2,

where z
∗ is the minimizer of lA,b.

Proof Let us fix any ζ > 0 and set σ = 1.3ζ in the definition of Ak in (2.2), in which we
set k = 4T + 2. Note that the norm of Ak satisfies (2.22). Applying Proposition 3.2 to Ak,
bk, and M with t = T , we obtain the following result: there exists an orthogonal matrix
U := UT that satisfies U⊤A⊤

k bk = A⊤
k bk, such that when M is applied to minimize lAkU,bk ,

its iterates xi satisfies xi ∈ U⊤K2i+1,k for all 0 ≤ i ≤ T . Note that in this result we have

lAkU,bk(xT ) ≥ min
x∈U⊤K2T+1,k

lAkU,bk(x) = min
x∈U⊤K2T+1,k

h(AkUx)− x
⊤U⊤A⊤

k bk

= min
x∈K2T+1,k

h(Akx)− x
⊤A⊤

k bk = min
x∈K2T+1,k

fk(x) and

l∗AkU,bk
= min

x∈Rk
lAkU,bk(x) = min

x∈Rk
h(AkUx)− x

⊤U⊤A⊤
k bk (3.9)

= min
x∈Rk

h(Akx)− x
⊤A⊤

k bk = min
x∈Rk

fk(x) = f∗
k .

Here we use the definition of fk in (2.3). Consequently,

lAkU,bk(xT )− l∗AkU,bk
≥ min

x∈K2T+1,k

fk(x)− f∗
k . (3.10)

Note from (3.9) above that the minimizer z∗ of lAkU,bk(x) satisfies z
∗ = U⊤

x
∗, where x∗ is

the minimizer of fk defined in (2.8). Since xT ∈ U⊤K2T+1,k, we have

‖xT − z
∗‖2 ≥ max

x∈K2T+1

‖x− x
∗‖2

≥c2
k−2T−1
∑

i=1

i2 =
c2

6
(k − 2T − 1)(k − 2T )(2k − 4T − 1)

=
c2

6
(2T + 1)(2T + 2)(4T + 1).

Here the last equality is since we set k = 4T + 2. Also, recalling that M starts at x0 = 0
we have

‖x0 − z
∗‖2 = ‖x∗‖2 =c2

4T+2
∑

i=1

i2 =
c2

6
(4T + 2)(4T + 3)(8T + 5).

14



Logistic Regression Worst-Case Dataset

Summarizing the above two relations we have

‖xT − z
∗‖2 >1

8
‖x0 − z

∗‖2. (3.11)

Furthermore, applying (3.11), Lemma 2.4, and the estimate of lower bound in (2.18) to
(3.10), we have

lAkU,bk(xT )− l∗AkU,bk

≥4(k − 2T − 1) [(σ − ζ)c− log cosh(σc) − log cosh(ζc)]

≥2(k − 2T − 1)c2σ2

=
6 ∗ (k − 2T − 1)σ2‖x0 − z

∗‖2
(2T + 1)(4T + 3)(8T + 5)

.

Applying the estimate of ‖Ak‖ in (2.4) to the above, and recalling that k = 4T + 2, we
obtain

lAkU,bk(xT )− l∗AkU,bk
≤ 3‖A‖2‖x0 − z

∗‖2
32(4T + 3)(8T + 5)

.

By setting A := AkU ∈ R(16T+8)×(4T+2) and b := bk ∈ R(16T+8), we conclude the proof
from (3.10) and (3.11).

4. Concluding Remarks

In this paper, we describe some worst-case datasets for deterministic first-order methods on
solving binary logistic regression. The binary logistic regression functions with our worst-
case datasets can also server as new worst-case function instances among the class of smooth
convex optimization problems.

It should be noted that our description of Ak and bk in (2.2) are designed so that the
optimal intercept of binary logistic regression is 0. If we are focusing only on homogeneous
linear predictor case without requiring the optimal intercept to be 0, an easier dataset can
be designed by simply setting

Ak :=

(

2σWk

2ζWk

)

∈ R2k×k, bk :=

(

1k
−1k

)

∈ R2k

and follow the derivations in Sections 2 and 3.

References

Francis Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statis-

tics, 4:384–414, 2010.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points I. arXiv preprint arXiv:1710.11606, 2017a.

15



Ouyang and Squires

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points II: First-order methods. arXiv preprint arXiv:1711.00841, 2017b.
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