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Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ ∈ X to

f ∗ := min
x∈X

f (x) (CO)

such that f (x̃)− f ∗ < ε using first-order, deterministic algorithms.

Here,

f is a real-valued, convex function

Rn is a high dimensional space

X ⊆ Rn closed and convex

Specifically for smooth convex optimization,

∇f exists and is Lipschitz continuous with Lipschitz constant L, i.e. f is L-smooth

the projection onto X is computationally feasible
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Solving (CO)

Convex Optimization

Our problem of interest is computing an ε-solution x̃ ∈ X to

f ∗ := min
x∈X

f (x) (CO)

such that f (x̃)− f ∗ < ε using first-order, deterministic algorithms.

We desire algorithms with the following properties
computationally efficient

> low computational time
> avoids potentially difficult tasks

generic
> does not make assumptions on f or X
> covers a wide variety of applications

parameter free
> does not require knowledge of problem dependent information
> potentially adapts to problem setting
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Upper Complexity Bound

We’ll use oracle complexity theory to analyze computational efficiency

→ Identify an oracle Of ,X : Rn → S that encompasses the costly operations of an
algorithm

→ Count the number of oracle calls an algorithm requires to compute a solution

Example: Gradient Descent (GD)

xk = argmin
u∈X

∣∣∣∣∣∣∣∣u −
(
xk−1 −

1
ηk

∇f (xk−1)

)∣∣∣∣∣∣∣∣2
= argmin

u∈X
⟨∇f (xk−1), u⟩+

ηk
2

||u − xk−1||2

for properly chosen ηk , GD achieves an ε-solution in O(1/ε) iterations when applied
to sufficiently smooth problem instances of (CO)

if O(x) = (∇f (x)), then since GD makes 1 oracle call per iteration, it requires
O(1/ε) first-order oracle calls to compute an ε-solution

As a result, GD provides an upper complexity bound for problems of the form (CO). This
provides a limit on how "hard" a problem instance can be.
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Lower Complexity Bound

We can similarly discuss limitations on how "good" algorithms can be through the idea
of a lower complexity bound.

→ Specify algorithm class and problem setting

→ Given any algorithm, search for some "difficult" problem instance such that said
algorithm struggles to solve with respect to certain oracle

Example: Smooth Convex Optimization (Nemirovski, 1983)

for any method M, there exists a quadratic function g such that if M is applied to
minimize g at least Ω(1/

√
ε) first-order oracle calls must be made

since quadratics are a subset of smooth convex optimization, there cannot exist a
method which solves all smooth convex problems in less than O(1/

√
ε) gradient

evaluations

The worst case problem instance above provides a lower complexity bound for smooth
convex optimization with respect to the first-order oracle.
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Solving (CO)

Algorithm Nesterov’s accelerated gradient descent (NAGD)

Start: Choose x0 ∈ X . Set y0 := x0

for k = 1, . . . ,N do

zk =(1 − γk)yk−1 + γkxk−1,

xk =argmin
u∈X

⟨∇f (zk), u⟩+
ηk
2
∥u − xk−1∥2,

yk =(1 − γk)yk−1 + γkxk .

end for
Output yN .

minimizes linear approximation proximal problem
reduces to gradient descent when γk ≡ 1
computes ε-solution in only O(1/

√
ε) iterations

computes ε-solution in only O(1/
√
ε) oracle calls under the first-order oracle

optimal algorithm under this setting due to Nemirovski
requires knowledge of L to set ηk appropriately
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Research Directions in First-Order Optimization

We’ll now take a further look at the following two settings:

1 Hölder smooth extensions of conditional gradient sliding methods
Literature Review
The UCGS algorithm
Numerical Experiments

2 Gradient sliding techniques applied to ADMM type algorithms
Literature Review
Gradient Sliding ADMM
Regularization techniques
Achieving the lower complexity bound
Numerical Experiments
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Literature Review

Convex Optimization

Our problem of interest is computing an ε-solution x̃ ∈ X to

f ∗ := min
x∈X

f (x) (CO)

such that f (x̃)− f ∗ < ε using first-order, deterministic algorithms.

NAGD is optimal in terms of gradient evaluations, but we can continue to make
improvements by relaxing assumptions. Consider our projection assumption.

certain sets can be as difficult to project to as the underlying problem is to solve
> Convex Hull: X = conv(v1, . . . , vp)
> Standard Spectrahedron: X = {Y ∈ Rn×n : tr(Y ) = 1,Y ⪰ 0}

NAGD is of no use when projection is more difficult than (CO)

want to design algorithms that do not require difficult optimizations over X , i.e.
projection free methods
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Literature Review

Algorithm Conditional Gradient (CG) method

Start: Select parameters γk ∈ (0, 1], ηk > 0. Choose y0 ∈ X .
for k = 1, . . . ,N do

xk = argmin
x∈X

⟨∇f (yk−1), x⟩

yk = (1 − αk)yk−1 + αkxk

end for
Output yN .

run NAGD with a linear optimization rather than a projection by removing proximal
term

> when X is a convex hull, the linear optimization is a linear program
> when X is the standard spectrahedron, the linear optimization is a smallest eigenvalue

problem
requires O(1/ε) number of iterations to obtain ε-solution
more gradient evaluations and linear optimizations, but no projections at all
multiple objective considerations
optimal number of linear optimizations (Jaggi, 2013), but clearly suboptimal
gradient evaluation complexity
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Literature Review

We would like to get back the optimal gradient evaluation complexity.

Algorithm Conditional Gradient Sliding (CGS)

Start: Choose x0 ∈ X . Set y0 := x0

for k = 1, . . . ,N do

zk =(1 − γk)yk−1 + γkxk−1,

xk =CG(∇f (zk), xk−1, ηk , εk)

yk =(1 − γk)yk−1 + γkxk .

end for
Output yN .

uses NAGD as a framework for achieving good gradient complexity
solves xk subproblem approximately with linear optimizations only
fewer CG iterations implies fewer linear optimizations, but more gradient evaluations
if parameters are chosen properly, CGS computes ε-solution in O(1/

√
ε) gradient

evaluations and O(1/ε) linear optimizations (Lan, 2016)
optimal with respect to both oracles, but still requires L
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Literature Review

We are now ready to relax our final assumption, the Lipschitz smoothness of f . We
propose replacing it with the following assumption

Relaxed Assumption - Hölder Smooth

Assume that there exists a Hölder exponent ν ∈ [0, 1] and constant Mν > 0 such that

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ Mν

1 + ν
||x − y ||1+ν , ∀x , y ∈ X .

This is a generalization of Lipschitz continuous gradient. In particular,

any convex smooth f with Lipschitz continuous gradient M1 is Hölder smooth with
ν = 1

any convex nonsmooth Lipschitz continuous f with is Hölder smooth with ν = 0

any convex smooth f satisfying

||∇f (y)−∇f (x)|| ≤ Mν ||y − x ||ν , ∀x , y ∈ X

is Hölder smooth with ν ∈ (0, 1)
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The UCGS Algorithm

How can we address the loss of the Lipschitz smoothness? It appeared in two different
aspects of algorithm analysis

it was used in the analysis to bound f (yk)− f (zk)

it was used explicitly in the parameter setting

To address these issues as simply as possible, we can search for a substitute constant Lk

that satisfies an approximate Lipschitz condition locally

f (yk) ≤ f (zk) + ⟨∇f (zk), yk − zk⟩+
Lk

2
||yk − zk ||2 + ek .

through a backtracking linesearch process. We can then proceed with the rest of the CGS
algorithm.
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The UCGS Algorithm

Algorithm Universal Conditional Gradient Sliding (UCGS)

Start: Choose x0 ∈ X and ε > 0. Set y0 = x0
for k = 1, . . . ,N do

Decide Lk > 0 satisfying

f (yk ) ≤ f (zk ) + ⟨∇f (zk ), yk − zk ⟩+
Lk

2
||yk − zk ||2 +

ε

2
γk

where

zk =(1 − γk )yk−1 + γkxk−1,

xk =ACG(∇f (zk ), xk−1, ηk , εk , δk )

yk =(1 − γk )yk−1 + γkxk .

Terminate if
max
x∈X

f (yk )− ℓk (x) ≤ ε

where

ℓk (x) = Γk

k∑
i=1

γi

Γi
(f (zi ) + ⟨∇f (zi , x − zi ⟩)

end for
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The UCGS Algorithm

Theorem

Suppose that we apply UCGS with parameters

βk = Lkγk , ηk =
LkγkD

2
X

k
, Γk =

Lγ2
k

k
, and εk =

σLkγ
2
kD

2
X

2
,

with γk satisfying Γk = (1 − γk)Γk−1, and δt = σβkD
2
X/t in the ACG procedure, where

σ ≥ 0 is a parameter related to the accuracy of approximately solving linear objective
optimization subproblems.Then UCGS terminates with an ε-solution after at most Niter

outer iterations where

Niter :=

16

(
(3 + σ)

1+ν
2 MνD

1+ν
X

ε

) 2
1+3ν


Consequently, the total number of gradient evaluations and linear objective optimizations
performed by UCGS to find an ε-solution can be bounded by O((1/ε)

2
1+3ν ) and

O((1/ε)
4

1+3ν ) respectively.
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The UCGS Algorithm
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The UCGS Algorithm

Properties of UCGS
Theoretical

> obtains the optimal O((1/ε)
2

1+3ν ) gradient evaluations for an ε-solution (Nemirovski,
1983)

> improves the best known number of linear optimizations required by the Universal CG
variant (Nesterov, 2018) from O((1/ε)

1
ν ) to O((1/ε)

4
1+3ν )

> achievable by novel choice of γk
Practical

> contains a stopping condition
> allows linear optimization problems to be solved approximately by analyzing with ACG

method
> does not require knowledge of (ν,Mν) for setting of parameters
> adaptive to local geometry
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Numerical Results

We consider the problem

min
x∈conv(V )

f (x) := ||Ax − b||2

with V = {v1, . . . , vp} ⊆ Rn, conv(V ) := {x ∈ Rn : ∃λ ∈ ∆p s.t. x =
∑p

j=1 λivi}, and
∆p := {λ ∈ Rp :

∑p
i=1 λi = 1, λi ≥ 0} is the standard simplex.

UCGS Universal CG
n d GE LO Time Error Iter Time Error

2500 0.2 66 2690 6.71 9.945e − 4 572 13.42 9.7086e1
2500 0.4 60 3679 9.08 9.976e − 4 524 18.17 1.404e2
2500 0.6 62 245 2.64 9.678e − 4 146 5.29 5.598e2
2500 0.8 57 3176 8.45 9.768e − 4 399 16.93 2.400e2
5000 0.2 71 286 7.13 9.882e − 4 178 14.32 6.037e2
5000 0.4 42 52 4.89 9.585e − 4 84 9.81 1.689e3
5000 0.6 68 4564 36.14 9.727e − 4 483 72.40 3.527e2
5000 0.8 67 419 12.91 9.815e − 4 161 25.94 1.165e3
10000 0.2 85 12269 150.51 9.96e − 4 915 301.21 2.449e2
10000 0.4 69 12614 157.39 9.916e − 4 636 315.27 4.734e2
10000 0.6 70 16063 205.87 9.821e − 4 653 412.14 5.423e2
10000 0.8 69 12707 180.65 9.862e − 4 473 361.73 8.162e2
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Research Directions in First-Order Optimization

We’ll be looking at the following two settings:

1 Hölder smooth extensions of conditional gradient sliding methods
Literature Review
The UCGS algorithm
Numerical Experiments

2 Gradient sliding techniques applied to ADMM type algorithms
Literature Review
Gradient Sliding ADMM
Regularization techniques
Achieving the lower complexity bound
Numerical Experiments

ADMM Type Algorithms Improved First-Order Methods January 8, 2023 19 / 41



Literature Review

Affinely Constrained Optimization

Consider a new class of smooth convex optimization problems of the form

F ∗ := min
x∈X

f (x) + h(Kx) = min
x∈X ,z∈Z

f (x) + h(z) s.t. Kx = z . (ACO)

where

f is L-smooth and X is easy to project to

h is Lipschitz continuous but possibly nonsmooth

the proximal mapping problem involving h(·) is easy, i.e.

min
w∈Rm

h(w) +
ρ

2
∥w − z∥2

can be solved quickly

Such problems are common in machine learning and imaging science where h is some
regularization/loss term, e.g. h = ||·||1.
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Literature Review

Algorithm Alternating direction method of multipliers (ADMM)

Start: Start: Choose x0 ∈ X , y0 ∈ Rm, and z0 := Kx0.
for k = 1, . . . ,N do

xk =argmin
u∈X

Lρ(u, yk−1, zk−1)

zk =argmin
w∈Rm

Lρ(xk , yk−1,w)

yk =yk−1 + ρ(Kxk − zk)

end for
Output xN .

minimizes Augmented Lagrangian instead

Lρ(u, v ,w) = f (u) + h(w) + ⟨v ,Ku − w⟩+ ρ

2
∥Ku − w∥2

alternates updating primal and dual variables

only requires O(||K || /ε) iterations, but potential problematic xk subproblem
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Literature Review

Algorithm Linearized Alternating Direction Method of Multipliers (L-ADMM)

Start: Choose x0 ∈ X . Set y0 := 0 and z0 := Kx0.
for k = 1, . . . ,N do

xk =argmin
u∈X

⟨∇f (xk), u⟩+ K⊤(yk−1 + θk(Kxk−1 − zk−1)), u⟩+
ηk
2
∥u − xk−1∥2

zk =argmin
w∈Rm

− ⟨yk−1,w⟩+ h(w) +
τk
2
∥Kxk − w∥2

yk =yk−1 + ρk(Kxk − zk)

end for
Output xN .

linearizes the problematic subproblem and reduces it to a projection

computes ε-solution in O((L+ ||K ||)/ε) oracle calls of O(x , y) = (∇f (x),Kx ,KT y)

ADMM Type Algorithms Improved First-Order Methods January 8, 2023 22 / 41



Literature Review

Algorithm Accelerated Alternating Direction Method of Multipliers (A-ADMM)

Start: Choose x0 ∈ X . Set x0 := x0, y0 := 0, and z0 := Kx0.
for k = 1, . . . ,N do

xk =(1 − γk)xk−1 + γkxk−1,

xk =argmin
u∈X

⟨∇f (xk), u⟩+ K⊤(yk−1 + θk(Kxk−1 − zk−1)), u⟩+
ηk
2
∥u − xk−1∥2

zk =argmin
w∈Rm

− ⟨yk−1,w⟩+ h(w) +
τk
2
∥Kxk − w∥2,

yk =yk−1 + ρk(Kxk − zk).

xk =(1 − γk)xk−1 + γkxk .

end for
Output xN .

acceleration motivated by NAGD

was shown in that it computes ε-solution in O(
√

L/ε+ ||K || /ε) oracle calls of
O(x , y) = (∇f (x),Kx ,KT y)
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Literature Review

A few remarks

it was shown that Ω(
√

L/ε+ ||K || /ε) is the lower complexity bound for problems of
the form (ACO) using oracle O(x , y) = (∇f (x),Kx ,KT y) (Ouyang and Xu, 2019)

using oracle O(x , y) = (∇f (x),Kx ,KT y) for analysis assumes that any algorithm
makes 1 gradient evaluation for every operator evaluation

although it makes sense to use O(x , y) for analyzing A-ADMM, we may be able to
achieve better bounds by separating the oracles into one for gradients and one for
operators

by splitting the oracles, we can focus on minimizing the calls to one or the other
rather than both simultaneously

In particular, we may be able to achieve better results by specifically minimizing the calls
to a single oracle. Similarly to CGS, perhaps there is an algorithm that minimizes the
gradient evaluations while keeping the operator evaluations low.
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Gradient Sliding ADMM

Algorithm Gradient sliding alternating direction method of multipliers (GS-ADMM)

Start: Choose x0 ∈ X and set x0 := x0

for k = 1, . . . ,N do

xk =(1 − γk)xk−1 + γkxk−1

(x̃k , xk , yk , zk) =ApproxGS(∇f (xk), xk−1, yk−1, zk−1)

xk =(1 − γk)xk−1 + γk x̃k

end for
Output xN .

uses NAGD as a framework for achieving good gradient complexity

must deal with subproblem in a sophisticated way

subproblem is approximately solved using ApproxGS
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Gradient Sliding ADMM

The NAGD subproblem when applied to (ACO) takes the form

minϕ(u,w) := ⟨g , u⟩+ h(w) +
β

2
∥u − x∥2 s.t. Ku = w

for which we can use L-ADMM to solve.

Algorithm Approximate GS-ADMM subproblem (ApproxGS)

Start: Choose x0 ∈ X . Set y0 := 0 and z0 := Kx0.
for t = 1, . . . ,T do

xt =argmin
u∈X

⟨g , u⟩+ β

2
||u − x ||2 + ⟨KT (yt−1 + θt(Kxt−1 − zt−1)), u⟩+

ηt
2
||u − xt−1||2

zt =argmin
w∈Rm

− ⟨yt−1,w⟩+ h(w) +
τt
2
∥Kxt − w∥2

yt =yt−1 + ρt(Kxt − zt)

end for
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Gradient Sliding ADMM

Theorem

Suppose that the parameters in GS-ADMM are set to

Tk =

⌈
N ||K ||DY

LDX

⌉
, γk =

2
k + 1

, βk =
2L
k

and the parameters in the k-th call to the ApproxGs procedure are set to

ηt =
σN

k
||K ||2 + βk(t − 1), τt = θt ≡

σN

k
, ρt ≡

σk

N

where σ = DY /||K ||DX . Then the number of gradient evaluations of ∇f operator
evaluations are bounded by

N∇f :=

√
5LD2

X

ε
and NK :=

5∥K∥DXDY

ε
+

√
5LD2

X

ε

respectively.

under appropriate parameter settings, GS-ADMM computes ε-solution in only
O(
√

L/ε) gradient evaluations and O(
√

L/ε+ ||K || /ε) operator evaluations

clear improvement from A-ADMM
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Regularization Techniques

Unfortunately, in order to complete the convergence analysis for GS-ADMM, we are
required to set

τt,k =
σN

k
, θt,k =

σN

k
, ρt,k =

σk

N

and other parameters similarly where N is the total number of iterations to be computed.
Such reliance on N is not preferred. Lan proposed a technique called dual regularization
to alleviate such issues (Lan, 2020). We can adapt this idea to our sliding algorithms.

Key Idea: Add additional terms in the optimization subproblems that do not change the
computational efficiency of solving them. Then, leverage these extra terms in the analysis
to provide flexibility in the parameter selection process.
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Regularization Techniques

To remove N, we propose replacing ApproxGS in GS-ADMM with the following algorithm.

Algorithm Approximate regularized GS-ADMM subproblem (ApproxGSR)

Start: Choose x0 ∈ X . Set y0 := 0 and z0 := Kx0.
for t = 1, . . . ,T do

xt = argmin
u∈X

⟨g , u⟩+ β
2 ∥u − x∥2 + ⟨K⊤(yt−1 + θt(Kxt−1 − zt−1))− αt(Kxt−1 − Kx), u⟩

+ ηt
2 ∥u − xt−1∥2 + ξt

2 ||u − x ||2

zt = argmin
w∈Z

h(w)− ⟨yt−1,w⟩+ τt
2 ∥w − Kxt∥2 + ζt

2 ||w − z0||2

yt =
1

1+ρtδt
yt−1 +

ρtδt
1+ρtδt

y0 +
ρt

1+ρtδt
(Kxt − zt)

end for
Output xN .

adds regularization terms

does not change the difficulty of solving each subproblem
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Regularization Techniques

Theorem

Suppose that the parameters in Regularized GS-ADMM are set to

Tk = ⌈µk⌉, βk = 2L
k
, γk = 2

k+1

and the parameters in the k-th call to the ApproxGSR procedure are set to

τt = θt ≡ σ, ρt ≡ ρ, ζt = αt =
σ
t
, ξt =

σ
t
||K ||2 , ηt = βk

(
t−1
2

)
+ σ ||K ||2 , and δt = 1

ρt

where
σ = χ ⌈µk⌉

µk
, ρ = χ µk

⌈µk⌉ , χ = DY
||K ||DX

, and µ = ||K ||DY
LDX

.

Then the number of gradient evaluations of ∇f operator evaluations are bounded by

N∇f :=

√
7LD2

X
ε

and NK := 7∥K∥DXDY
ε

+

√
7LD2

X
ε

respectively.

corresponding (R-)GS-ADMM algorithm can achieve the same complexities

new parameter setting does not require N
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Achieving the Lower Complexity Bound

The idea of sliding has been very crucial thus far. We can summarize this fundamental
idea for problems with multiple oracles:

1 Choose outer iteration algorithm that computes an ε-solution with optimal (outer)
oracle calls

2 Choose inner iteration algorithm that resolves potential subproblems in the outer
iterations without additional outer oracle calls and with good complexity of inner
oracle calls

3 Adjust the analysis/parameter setting such that both objectives are achieved
simultaneously

For the above GS-ADMM method, NAGD and L-ADMM satisfied the conditions in 1-2
and were chosen as a result. Step 3 required some modifications and novel analysis
techniques. What if we wanted to reduce the calls to the operator oracle?
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Achieving the Lower Complexity Bound

Algorithm Operator sliding alternating direction method of multipliers (OS-ADMM)

Start: Choose u0 ∈ X . Set u0 := u0, ũ0 := u0, v0 := 0 and w0 := Ku0.
for t = 1, . . . ,T do

lt =K⊤(vt−1 + θk(Kũt−1 − wt−1))

(ũt , ut) =ApproxOS(lt , ut−1, ut−1, ηt ,Nt)

ut =(1 − λt)ut−1 + λũt

wt =argmin
w∈Rm

− ⟨vk−1,w⟩+ h(w) + τk
2 ∥Kũt − w∥2

vt =vt−1 + ρk(Kũt − wt)

end for
Output xN .

uses ADMM as a framework for achieving good operator complexity

must deal with subproblem in a sophisticated way

subproblem is approximately solved using a variant of NAGD called ApproxOS

ADMM Type Algorithms Improved First-Order Methods January 8, 2023 32 / 41



Achieving the Lower Complexity Bound

The ADMM subproblem when applied to (ACO) takes the form

min
u∈X

ψ(u) := f (u) + ⟨l , u⟩+ η
2 ∥u − x∥2.

for which we can use a modified NAGD method to solve.

Algorithm Approximate OS-ADMM subproblem (ApproxOS)

Start: Choose x0 ∈ X . Set x̃0 := x0

for k = 1, . . . ,N do
Compute

xk =(1 − λ)x̃0 + λ(1 − γk)x̃k−1 + λγkxk−1,

xk =argmin
u∈X

⟨∇f (xk) + l , u⟩+ η
2 ∥u − x∥2 + βk

2 ∥u − xk−1∥2,

x̃k =(1 − γk)x̃k−1 + γkxk .

end for
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Achieving the Lower Complexity Bound
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Achieving the Lower Complexity Bound

Theorem

Suppose that the parameters in OS-ADMM are set to

Nt ≡
⌈√

LDX
T∥K∥DY

⌉
, λt =

2
t+1 , ηt =

σT
t
∥K∥2, τt = θt =

σT
t
, ρt =

σt
T
,

and that the parameters in the k-th call to the ApproxOS procedure are set to

γk = 2
k+1 , βk = 2L

kt

where σ = DY
∥K∥DX

. Then the number of gradient evaluations and operator evaluations are
bounded by

TK := 9∥K∥DXDY
ε

and T∇f :=

√
9LD2

X
ε

+ 9∥K∥DXDY
ε

respectively.

computes ε-solution in only O(||K || /ε) operator evaluations and
O(
√

L/ε+ ||K || /ε) gradient evaluations

clear improvement from A-ADMM
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Achieving the Lower Complexity Bound

There is an apparent tradeoff in choosing between GS-ADMM and OS-ADMM. Consider
the quantity π := ||K ||√

εL
.

If π ≥ 1,

NK =

√
5L
ε

+
5 ||K ||
ε

≤ ||K ||√
εL

·
√

5L
ε

+
5 ||K ||
ε

=
(5 +

√
5) ||K ||
ε

.

One the other hand, if π ≤ 1

T∇f =

√
9L
ε

+
9 ||K ||
ε

≤
√

9L
ε

+

√
εL

||K || ·
9 ||K ||
ε

= 12

√
L

ε
.

Thus, either GS-ADMM or OS-ADMM will have both optimal gradient and operator
oracle complexities.
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Achieving the Lower Complexity Bound

Algorithm Sliding alternating direction method of multipliers (S-ADMM)

Compute π := ||K || /
√
εL

if π ≥ 1 then
Apply GS-ADMM.

else
Apply OS-ADMM.

end if

chooses to slide on best oracle

computes ε-solution in only O(||K || /ε) operator evaluations and O(
√

L/ε) gradient
evaluations

improves both oracle complexities
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Summary of Contributions

GS-ADMM

reduces gradient evaluations required as compared to A-ADMM

crucial step was the modification of ADMM to facilitate analysis

(R-)GS-ADMM

demonstrates that regularization modifications can also be applied to sliding ADMM
methods by removing the need for N in the parameter settings of GS-ADMM

crucial step was the adaptation of the previous ApproxGS analysis

we believe similar modifications can be made to OS-ADMM using the same
adaptations

OS-ADMM

reduces operator evaluations required as compared to A-ADMM

completes the lower complexity bound picture when combined with GS-ADMM to
obtain S-ADMM

crucial step was the modification of NAGD to facilitate analysis
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Numerical Experiments

Problem setting:

motivated from worst-case instance in Ouyang and Xu, 2019.

f (x) = 1
2x

TQx − qT x , h(x) = ||Kx − b||2
one sparse, one dense matrix for each experiment

GS-ADMM better when gradient evaluations are expensive and A-ADMM preforms
as worse as possible

OS-ADMM better when operator evaluations are expensive and A-ADMM preforms
as worse as possible

very contrived examples

better to do more realistic experiments
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Numerical Experiments

Problem setting:

popular image reconstruction problem in imaging science

f (x) = 1
2 ||Ax − f ||2 h(x) = λ ||Dx ||2,1

we let S-ADMM determine sliding

S-ADMM A-ADMM√
n log λ GE OE Obj Val Rel Err Iter Obj Val Rel Err

100 0 500 125250 1.00e + 05 11.51 18742 1.03e + 05 11.47
150 0 500 125250 1.86e + 05 9.52 8073 2.17e + 05 9.23
200 0 500 125250 2.86e + 05 8.19 4663 3.76e + 05 7.28
100 −1 500 125250 1.33e + 04 7.69 15135 1.36e + 04 7.68
150 −1 500 125250 2.47e + 04 6.03 3976 2.88e + 04 6.96
200 −1 500 125250 3.72e + 04 4.95 2608 4.66e + 04 6.35
100 −2 500 125250 1.65e + 03 9.52 14613 1.42e + 03 7.48
150 −2 500 125250 3.18e + 03 8.08 4228 3.14e + 03 7.61
200 −2 500 125250 4.97e + 03 7.10 2558 7.07e + 03 12.53
100 −3 500 125250 5.78e + 02 49.17 14351 1.44e + 02 7.32
150 −3 500 125250 1.30e + 03 49.43 4900 4.36e + 02 13.16
200 −3 500 125250 2.31e + 03 49.54 2772 1.82e + 03 39.62

S-ADMM preferable as n gets large and for common problems in imaging science
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Thanks for your attention. The discussed works and their publication information can be
found at http://tsquire.people.clemson.edu/ or by email tsquire[at]clemson[dot]edu
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