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Problem Setting

Convex Optimization

Our problem of interest is computing an e-solution X € X to

f* := min f(x) (CO)

xeX
such that f(X) — f* < e using first-order, deterministic algorithms.

Here,
o f is a real-valued, convex function
o R" is a high dimensional space
o X CR" closed and convex
Specifically for smooth convex optimization,
o Vf exists and is Lipschitz continuous with Lipschitz constant L, i.e. f is L-smooth

o the projection onto X is computationally feasible
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Solving (CO)

Convex Optimization

Our problem of interest is computing an e-solution X € X to

f* := min f(x) (CO)

xeX
such that f(X) — f* < e using first-order, deterministic algorithms.

We desire algorithms with the following properties
o computationally efficient

> low computational time
> avoids potentially difficult tasks

@ generic

> does not make assumptions on f or X
> covers a wide variety of applications

o parameter free

> does not require knowledge of problem dependent information
> potentially adapts to problem setting
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Upper Complexity Bound

We'll use oracle complexity theory to analyze computational efficiency

— ldentify an oracle Of x : R” — S that encompasses the costly operations of an
algorithm

— Count the number of oracle calls an algorithm requires to compute a solution
Example: Gradient Descent (GD)

2
Xy = argmin ||u — <xk_1 — in(xk_1)>
ueX Tk
= argmin (Vf(xxk—1), u) + 772—‘( [|u — xk—1|?

ueX

o for properly chosen 7, GD achieves an e-solution in O(1/¢) iterations when applied
to sufficiently smooth problem instances of (CO)

o if O(x) = (Vf(x)), then since GD makes 1 oracle call per iteration, it requires
O(1/¢) first-order oracle calls to compute an e-solution

As a result, GD provides an upper complexity bound for problems of the form (CO). This
provides a limit on how "hard" a problem instance can be.
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Lower Complexity Bound

We can similarly discuss limitations on how "good" algorithms can be through the idea
of a lower complexity bound.

— Specify algorithm class and problem setting

— Given any algorithm, search for some "difficult" problem instance such that said
algorithm struggles to solve with respect to certain oracle

Example: Smooth Convex Optimization (Nemirovski, 1983)

o for any method M, there exists a quadratic function g such that if M is applied to
minimize g at least Q(1/4/€) first-order oracle calls must be made
@ since quadratics are a subset of smooth convex optimization, there cannot exist a
method which solves all smooth convex problems in less than O(1/4/€) gradient
evaluations
The worst case problem instance above provides a lower complexity bound for smooth
convex optimization with respect to the first-order oracle.
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Complexity Bounds

O(1/¢)

upper complexity bound
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Solving (CO)

Algorithm Nesterov's accelerated gradient descent (NAGD)

Start: Choose xp € X. Set yo := xo
for k=1,... N do

zi =(1 — V) Yk—1 + YeXk—1,

xx =argmin(Vf(z), u) + %Hu — xk-1]%,
ueX

Vi =(1 — Vi) Yk—1 + VieXk-

end for
Output yn.

minimizes linear approximation proximal problem

reduces to gradient descent when v, =1

computes e-solution in only O(1/4/€) iterations

computes e-solution in only O(1/4/¢) oracle calls under the first-order oracle
optimal algorithm under this setting due to Nemirovski

requires knowledge of L to set nx appropriately
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Research Directions in First-Order Optimization

We'll now take a further look at the following two settings:

Q Holder smooth extensions of conditional gradient sliding methods
o Literature Review
o The UCGS algorithm
o Numerical Experiments

@ Gradient sliding techniques applied to ADMM type algorithms
Literature Review

Gradient Sliding ADMM

Regularization techniques

Achieving the lower complexity bound

Numerical Experiments

©
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Literature Review

Convex Optimization

Our problem of interest is computing an e-solution X € X to

f* := min f(x) (CO)

xeX
such that f(X) — f* < € using first-order, deterministic algorithms.

NAGD is optimal in terms of gradient evaluations, but we can continue to make
improvements by relaxing assumptions. Consider our projection assumption.
@ certain sets can be as difficult to project to as the underlying problem is to solve
> Convex Hull: X = conv(vy,...,vp)
> Standard Spectrahedron: X = {Y ER™M:tr(Y)=1,Y = 0}
@ NAGD is of no use when projection is more difficult than (CO)

@ want to design algorithms that do not require difficult optimizations over X, i.e.
projection free methods
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Literature Review

Algorithm Conditional Gradient (CG) method

Start: Select parameters v, € (0, 1], 7« > 0. Choose yo € X.
for k=1,... N do

xx = argmin(Vf(yk—1), x)
xeX

ye = (1 — au)yk—1 + aux

end for
Output yn.

o run NAGD with a linear optimization rather than a projection by removing proximal
term
> when X is a convex hull, the linear optimization is a linear program
> when X is the standard spectrahedron, the linear optimization is a smallest eigenvalue
problem

requires O(1/c) number of iterations to obtain e-solution

more gradient evaluations and linear optimizations, but no projections at all
multiple objective considerations

optimal number of linear optimizations (Jaggi, 2013), but clearly suboptimal
gradient evaluation complexity
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Literature Review

We would like to get back the optimal gradient evaluation complexity.

Algorithm Conditional Gradient Sliding (CGS)

Start: Choose xp € X. Set yo := xo
fork=1,...,N do

zk =(1 — ) yk—1 + YaXk—1,
xk =CG(VF(zk), Xk—1, Mk, €k)
Ve =(1 = )y + YXe

end for
Output yn.

uses NAGD as a framework for achieving good gradient complexity
solves xx subproblem approximately with linear optimizations only
fewer CG iterations implies fewer linear optimizations, but more gradient evaluations

if parameters are chosen properly, CGS computes e-solution in O(1/4/€) gradient
evaluations and O(1/¢) linear optimizations (Lan, 2016)

o optimal with respect to both oracles, but still requires L

Universal and Projection Free Methods Improved First-Order Methods January 8, 2023 11 /41



Literature Review

We are now ready to relax our final assumption, the Lipschitz smoothness of f. We
propose replacing it with the following assumption
Relaxed Assumption - Holder Smooth

Assume that there exists a Holder exponent v € [0,1] and constant M, > 0 such that

F(y) < F(x) +(VF(x),y = x) + == lIx = y|[""™, ¥x,y € X.

M,
1+v
This is a generalization of Lipschitz continuous gradient. In particular,

@ any convex smooth f with Lipschitz continuous gradient M; is Holder smooth with
v=1

@ any convex nonsmooth Lipschitz continuous f with is Holder smooth with v =0

@ any convex smooth f satisfying
[IVE(y) = VEQI < My fly = x||”, Vx,y € X

is Holder smooth with v € (0,1)
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The UCGS Algorithm

How can we address the loss of the Lipschitz smoothness? It appeared in two different
aspects of algorithm analysis

o it was used in the analysis to bound f(yx) — f(zx)

o it was used explicitly in the parameter setting

To address these issues as simply as possible, we can search for a substitute constant Ly
that satisfies an approximate Lipschitz condition locally

L
fy) < f(ze) + (VF(z), v — ) + 7k Iy — ze|® + ex.

through a backtracking linesearch process. We can then proceed with the rest of the CGS
algorithm.

Universal and Projection Free Methods Improved First-Order Methods January 8, 2023 13 /41



The UCGS Algorithm

Algorithm Universal Conditional Gradient Sliding (UCGS)

Start: Choose xg € X and € > 0. Set yo = xo
for k=1,...,N do
Decide Ly > 0 satisfying

L €
Fvi) < F(2) +(VF(2oy = 20 + o v — 2l P + S
where
2z =(1 = Y )yk—1 + VeXk—1,
Xk :ACG(vf(Zk),kal,'r]k,Ek, 6k)
Yk =(1 = Yi)yk—1 + VX
Terminate if
_ <
max fyk) — Li(x) <e
where
k i
ék(X) =Ty Z F’ (f(z,-) + (Vf(z,-,x — Z,'))
i=1 !
end for
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The UCGS Algorithm

Theorem

Suppose that we apply UCGS with parameters

Ly D% = Ly;

22
P and g, = oL Dx

Tk 2

Bk = Lk, Mk =

with ~x satisfying Ty = (1 — 7)lk_1, and &; = o8 D%/t in the ACG procedure, where
o > 0 is a parameter related to the accuracy of approximately solving linear objective
optimization subproblems. Then UCGS terminates with an e-solution after at most Niter
outer iterations where

_2
N 16<(3+a)”z“MVD;+”>”3”
iter - —

€
Consequently, the total number of gradient evaluations and linear objective optimizations

performed by UCGS to find an e-solution can be bounded by O((l/s)ﬁ) and
(’)((l/e)ﬁ) respectively.
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The UCGS Algorithm
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The UCGS Algorithm

Properties of UCGS
o Theoretical

2

> obtains the optimal O((1/¢)1+3v ) gradient evaluations for an e-solution (Nemirovski,
1983)

> improves the best known number of linear optimizations required by the Universal CG

4

variant (Nesterov, 2018) from O((1/¢)7) to O((1/¢) 37 )

> achievable by novel choice of

o Practical

> contains a stopping condition

> allows linear optimization problems to be solved approximately by analyzing with ACG
method

> does not require knowledge of (v, M,)) for setting of parameters

> adaptive to local geometry
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Numerical Results

We consider the problem

in f(x):=||[Ax—b
Lemin  F(x) = [[Ax = bll,
with V = {v1,..., v} CR" conv(V) = {x € R": IN € Aps.t. x=3"", \ivi}, and
Api={XeRP: 32 X\i=1,\ >0} is the standard simplex.

UCGS Universal CG
n d GE LO Time Error Iter Time Error

2500 0.2 66 2690 6.71 9.945e — 4 | 572 13.42 9.7086el
2500 | 0.4 | 60 3679 9.08 9.976e — 4 | 524 18.17 1.404¢€2
2500 0.6 62 245 2.64 9.678e — 4 | 146 5.29 5.598e2
2500 0.8 57 3176 8.45 9.768e — 4 | 399 16.93 2.400e2
5000 0.2 71 286 7.13 9.882e —4 | 178 14.32 6.037¢e2
5000 | 0.4 | 42 52 4.89 9.585¢e —4 | 84 9.81 1.689e3
5000 0.6 638 4564 36.14 9.727e — 4 | 483 72.40 3.527¢e2
5000 0.8 67 419 12.91 9.815e — 4 | 161 25.94 1.165e3
10000 | 0.2 85 12269 150.51 9.96e — 4 915 301.21 2.449e2
10000 | 0.4 | 69 12614 157.39 9.916e—4 | 636 315.27  4.734e2
10000 | 0.6 70 16063 205.87 9.821le —4 | 653 412.14 5.423e2
10000 | 0.8 69 12707 180.65 9.862e —4 | 473 361.73 8.162e2
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Research Directions in First-Order Optimization

We'll be looking at the following two settings:

Q Holder smooth extensions of conditional gradient sliding methods
o Literature Review
o The UCGS algorithm
o Numerical Experiments

@ Gradient sliding techniques applied to ADMM type algorithms
Literature Review

Gradient Sliding ADMM

Regularization techniques

Achieving the lower complexity bound

Numerical Experiments

©
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Literature Review

Affinely Constrained Optimization

Consider a new class of smooth convex optimization problems of the form

F* .= min f(x) + h(Kx) = XerQ!?EZf(x) + h(z) st. Kx =z (ACO)

where

o f is L-smooth and X is easy to project to

o his Lipschitz continuous but possibly nonsmooth

o the proximal mapping problem involving h(-) is easy, i.e.
min h(w) + g||w —z|P?

weRmM

can be solved quickly

Such problems are common in machine learning and imaging science where h is some
regularization/loss term, e.g. h=||-|,.
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Literature Review

Algorithm Alternating direction method of multipliers (ADMM)

Start: Start: Choose xp € X, yo € R", and z := Kxo.
fork=1,...,N do

xx =argmin L,(u, yk—1,Zk—1)
ueXx

zi =argmin L, (X, Yk—1, w)
weRmM

Yk =yk—1 + p(Kxk — z«)

end for
Output xpy.

@ minimizes Augmented Lagrangian instead
Lty v, w) = Fu) + h(w) + {v, Ku = w) + 2| Ku — w]?

o alternates updating primal and dual variables

o only requires O(||K]| /) iterations, but potential problematic x, subproblem
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Literature Review

Algorithm Linearized Alternating Direction Method of Multipliers (L-ADMM)

Start: Choose xp € X. Set yo := 0 and zp := Kxo.
fork=1,...,N do

xi =argmin(Vf(xk), u) + K (yi—1 + Ok (Kxk—1 — zx—1)), u) + %Hu — x|
ueX

2 =argmin — (yi_1, w) + h(w) + %quk —lc
weRM

Yk =Yk—1 + pr(Kxx — zk)

end for
Output xy.

o linearizes the problematic subproblem and reduces it to a projection
o computes e-solution in O((L + ||K|[)/¢€) oracle calls of O(x,y) = (Vf(x), Kx, KTy)
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Literature Review

Algorithm Accelerated Alternating Direction Method of Multipliers (A-ADMM)

Start: Choose xo € X. Set Xo := x0, yo := 0, and zp := Kxo.
for k=1,... N do

X =(1 = Y )Xk—1 + YeXk—1,
xi =argmin(VF(x,), ) + K (yi—1 + Ok(Kxk—1 — zx—1)), u) + 7)2—k||u —xia?

ueX

2 =argmin — (y1,w) + h(w) + 2| Kxe — wl?,
weRmM

Y =Yk—1 + pr(Kxi — zi).
Xk =(1 — yi)Xk—1 + YiXk-

end for
Output Xy.

o acceleration motivated by NAGD
@ was shown in that it computes e-solution in O(y/L/e + ||K]| /¢) oracle calls of
O(x,y) = (VF(x), Kx, KTy)
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Literature Review

A few remarks

o it was shown that Q(+/L/e + ||K]|| /) is the lower complexity bound for problems of
the form (ACO) using oracle O(x,y) = (Vf(x), Kx, K" y) (Ouyang and Xu, 2019)

o using oracle O(x,y) = (Vf(x), Kx,KTy) for analysis assumes that any algorithm
makes 1 gradient evaluation for every operator evaluation

o although it makes sense to use O(x, y) for analyzing A-ADMM, we may be able to
achieve better bounds by separating the oracles into one for gradients and one for
operators

o by splitting the oracles, we can focus on minimizing the calls to one or the other
rather than both simultaneously

In particular, we may be able to achieve better results by specifically minimizing the calls
to a single oracle. Similarly to CGS, perhaps there is an algorithm that minimizes the
gradient evaluations while keeping the operator evaluations low.
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Gradient Sliding ADMM

Algorithm Gradient sliding alternating direction method of multipliers (GS-ADMM)

Start: Choose xo € X and set Xo := xo
for k=1,...,N do

X =(1 — Y )Xk—1 + YiXk—1
()?k, Xky Yk, Zk) :AppI’OXGS(Vf(Kk), Xk—1,y Yk—1, Zk_l)
Xk =(1 — yi)Xk—1 + YKk

end for
Output Xp.

o uses NAGD as a framework for achieving good gradient complexity
o must deal with subproblem in a sophisticated way

o subproblem is approximately solved using ApproxGS
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Gradient Sliding ADMM

The NAGD subproblem when applied to (ACO) takes the form
min ¢(u, w) := (g, u) + h(w) + gﬂu —x|?st. Ku=w

for which we can use L-ADMM to solve.

Algorithm Approximate GS-ADMM subproblem (ApproxGS)

Start: Choose xo € X. Set yo := 0 and zp := Kxo.
fort=1,...,T do

x: argmin (g, ) + 5 [lu— xI? + (KT (s + 0l 1 — ze1),0) + 2 Jlo = xea P
ueX

z =argmin — (y¢—1, w) + h(w) + %Hth —w|?
weRmM

ye =yi—1 + pe(Kxe — z¢)

end for
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Gradient Sliding ADMM

Theorem
Suppose that the parameters in GS-ADMM are set to

N||K|| Dy 2 2L
T = —_— = —_— = —
k [ Dx | T rrr T %

and the parameters in the k-th call to the ApproxGs procedure are set to

N N k
ne= T IKIP + Bt = 1), me = 0e = 7% pe = G7
where 0 = Dy /||K|| Dx. Then the number of gradient evaluations of Vf operator
evaluations are bounded by

LD2 LDZ
Ny¢ = STX and Ny := 5||K||£XDY I \/i

@ under appropriate parameter settings, GS-ADMM computes e-solution in only
O(y/L/e) gradient evaluations and O(y/L/e + ||K]| /€) operator evaluations

o clear improvement from A-ADMM

respectively.
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Regularization Techniques

Unfortunately, in order to complete the convergence analysis for GS-ADMM, we are

required to set
N, _oN ok
Kk’ t,k = P s Ptk = N
and other parameters similarly where N is the total number of iterations to be computed.
Such reliance on N is not preferred. Lan proposed a technique called dual regularization

to alleviate such issues (Lan, 2020). We can adapt this idea to our sliding algorithms.

Ttk =

Key Idea: Add additional terms in the optimization subproblems that do not change the
computational efficiency of solving them. Then, leverage these extra terms in the analysis
to provide flexibility in the parameter selection process.
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Regularization Techniques

To remove N, we propose replacing ApproxGS in GS-ADMM with the following algorithm.

Algorithm Approximate regularized GS-ADMM subproblem (ApproxGSR)

Start: Choose xo € X. Set yo := 0 and zp := Kxo.
fort=1,..., T do

x; = argmin (g, u) + 2 |lu — x||* + (KT (yeo1 4 0:(Kxt—1 — ze-1)) — ar(Kxe—1 — Kx), u)
ueX

+ = xeea |+ 5 flu— x|

20 = argmin h(w) = (yes, w) + F|w = Kl + § [|w = o]
ez

ye = 1+Pt5tyt 1+ 1+Pt5ty0 + 1+Pt5t (KXt - zt)

end for
Output xy.

@ adds regularization terms

o does not change the difficulty of solving each subproblem
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Regularization Techniques

Theorem

Suppose that the parameters in Regularized GS-ADMM are set to

Ti = [uk], B = 1 = =31
and the parameters in the k-th call to the ApproxGSR procedure are set to

e=0=0,pe=p, G = e = 2,6 = 2 [|K|®,n: = B (552) + o |IKI[?, and 6 = X

t
where
_ D _ KD
o =xUgl, p=Xx7T X = Triloe> and w= U552

Then the number of gradient evaluations of Vf operator evaluations are bounded by

7LD2 7||K||Dx D: 7LD2
Nos =1/ 2% and Ny := Il st Y 4 Ok

respectively.

o corresponding (R-)GS-ADMM algorithm can achieve the same complexities

@ new parameter setting does not require N
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Achieving the Lower Complexity Bound

The idea of sliding has been very crucial thus far. We can summarize this fundamental
idea for problems with multiple oracles:
@ Choose outer iteration algorithm that computes an e-solution with optimal (outer)
oracle calls
@ Choose inner iteration algorithm that resolves potential subproblems in the outer
iterations without additional outer oracle calls and with good complexity of inner
oracle calls
© Adjust the analysis/parameter setting such that both objectives are achieved
simultaneously
For the above GS-ADMM method, NAGD and L-ADMM satisfied the conditions in 1-2
and were chosen as a result. Step 3 required some modifications and novel analysis
techniques. What if we wanted to reduce the calls to the operator oracle?
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Achieving the Lower Complexity Bound

Algorithm Operator sliding alternating direction method of multipliers (OS-ADMM)

Start: Choose up € X. Set To := uo, fo := uo, vo := 0 and wo := Kuo.
fort=1,..., T do

It :KT(Vt—l + ek(Kﬁt—l - Wt—l))
(l’]t, Ut) :Appl"OXOS(It7 Ut—1,U¢—1, Nty Nt)
Ht :(1 — At)ﬂtfl + Al’jt

wy =argmin — (vk—1, w) + h(w) + 5 [|K i — w|?
weRM
Ve =ve—1 + pr(K i — wy)

end for
Output Xp.

o uses ADMM as a framework for achieving good operator complexity
o must deal with subproblem in a sophisticated way

o subproblem is approximately solved using a variant of NAGD called ApproxOS
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Achieving the Lower Complexity Bound

The ADMM subproblem when applied to (ACO) takes the form
min 4(u) = £(u) + (1,0 + 3o~ x|

for which we can use a modified NAGD method to solve.

Algorithm Approximate OS-ADMM subproblem (ApproxOS)

Start: Choose xo € X. Set % := xo
fork=1,...,N do
Compute

X =(1 = A)%o + A1 — Yi)Ku—1 + AMyixu—1,
x, =argmin (VF(x,) + 1, u) + Z||u— x||? + %Hu —xa?
ueX

I

e =(1 — yi)Xe—1 + YrXk-

end for
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Achieving the Lower Complexity Bound
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Achieving the Lower Complexity Bound

Theorem

Suppose that the parameters in OS-ADMM are set to

_ LDx _ 2 _ oT 2 _ __oT __ ot
N = [\/ 7T\|K|\Dy—‘ A= e =T KID, e =0= %, pe=F,

and that the parameters in the k-th call to the ApproxOS procedure are set to
2 2L
Yk = 51 Bk = %

where 0 = Hiﬁﬁ' Then the number of gradient evaluations and operator evaluations are
bounded by

9||K||Dx D 9LD% | 9||K||DxD
IK: H ”EX Y and I P EX ” HEX Y
respectively.

o computes e-solution in only O(||K|| /€) operator evaluations and
O(y/L/e + ||K]| /¢) gradient evaluations

o clear improvement from A-ADMM
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Achieving the Lower Complexity Bound

There is an apparent tradeoff in choosing between GS-ADMM and OS-ADMM. Consider

the quantity 7 := Lkl

Vel®
fr>1,

_ /5L 5||K|| _ K|l /5L 5IIKIl _ (5+V5)IIKI|
Nk = + < + = .
€ € Vel € € €

One the other hand, if 7 <1
E < fE Koyt
T =124/ —.
vi= |K|| € €

Thus, either GS-ADMM or OS-ADMM will have both optimal gradient and operator
oracle complexities.
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Achieving the Lower Complexity Bound

Algorithm Sliding alternating direction method of multipliers (S-ADMM)

Compute 7 := ||K|| /v/eL
if > 1 then

Apply GS-ADMM.
else

Apply OS-ADMM.
end if

@ chooses to slide on best oracle

@ computes e-solution in only O(||K|| /) operator evaluations and O(y/L/¢c) gradient
evaluations

@ improves both oracle complexities
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Summary of Contributions

GS-ADMM
o reduces gradient evaluations required as compared to A-ADMM
o crucial step was the modification of ADMM to facilitate analysis
(R-)GS-ADMM
o demonstrates that regularization modifications can also be applied to sliding ADMM
methods by removing the need for N in the parameter settings of GS-ADMM

o crucial step was the adaptation of the previous ApproxGS analysis

o we believe similar modifications can be made to OS-ADMM using the same
adaptations

OS-ADMM
o reduces operator evaluations required as compared to A-ADMM

o completes the lower complexity bound picture when combined with GS-ADMM to
obtain SSADMM

o crucial step was the modification of NAGD to facilitate analysis
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Numerical Experiments

Problem setting:
@ motivated from worst-case instance in Ouyang and Xu, 2019.
o F(x) = 2x7Qx — q7x, h(x) = ||Kx — b,
@ one sparse, one dense matrix for each experiment

—os Ao
asowa
008 —vests

stance to Optimal Value

0004

o

0002,

() 50 100 150 20 250 0 s 0 15 EY B E w© s

2
Time (5) Time (5)

GS-ADMM better when gradient evaluations are expensive and A-ADMM preforms
as worse as possible
o OS-ADMM better when operator evaluations are expensive and A-ADMM preforms
as worse as possible

very contrived examples

better to do more realistic experiments
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Numerical Experiments

Problem setting:
@ popular image reconstruction problem in imaging science
o f(x) = 3 [|Ax = fI[* h(x) = A||Dx]|,
o we let SSADMM determine sliding

S-ADMM A-ADMM

vn | logh | GE OE Obj Val Rel Err Iter Obj Val Rel Err
100 0 500 125250 1.00e + 05 11.51 18742  1.03e + 05 11.47
150 0 500 125250 1.86e 4 05 9.52 8073 2.17e + 05 9.23
200 0 500 125250 2.86e + 05 8.19 4663  3.76e + 05 7.28
100 | —1 | 500 125250 1.33e+ 04 7.69 15135 1.36e + 04 7.68
150 | —1 | 500 125250 2.47e+ 04 6.03 3976  2.88e + 04 6.96
200 -1 500 125250 3.72e 4 04 4.95 2608 4.66e + 04 6.35

100 -2 500 125250 1.65e 4 03 9.52 14613 1.42e +03 7.48
150 -2 500 125250 3.18e 403 8.08 4228  3.14e+ 03 7.61
200 —2 500 125250 4.97e 4 03 7.10 2558  7.07e 4 03 12.53
100 -3 500 125250 5.78e + 02 49.17 14351 1.44e+02 7.32
150 -3 500 125250 1.30e 403 49.43 4900  4.36e + 02 13.16

200 -3 500 125250 2.31e+ 03 49.54 2772 1.82e 403 39.62

o S-ADMM preferable as n gets large and for common problems in imaging science
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Thanks for your attention. The discussed works and their publication information can be
found at http://tsquire.people.clemson.edu/ or by email tsquire[at]clemson[dot]edu
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