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Abstract

The primary concern of this thesis is to explore efficient first-order methods of computing

approximate solutions to convex optimization problems. In recent years, these methods have become

increasingly desirable as many problems in fields such as machine learning and imaging science have

scaled tremendously. Our aim here is to acknowledge the capabilities of such methods and then

propose new techniques that extend the reach or accelerate the performance of the existing state-

of-the-art literature.

Our novel contributions are as follows. We first show that the popular Conditional Gradi-

ent Sliding (CGS) algorithm can be extended in application to objectives with Hölder continuous

gradients. CGS has gained much attention in recent years due to its ability to compute an approxi-

mate solution without the necessity of a projection oracle. However, it requires both the existence

and knowledge of certain smoothness parameters to properly run. We will relax the smoothness

requirements and utilize a backtracking linesearch approach to facilitate the algorithm without the

knowledge of the relaxed smoothness parameter. In doing so, we will design a new generalized CGS

algorithm which also has additional practical benefits over CGS in the smooth case.

Chapter 4 moves our discussion to affinely constrained problems and their limitations. These

methods can be solved by alternating direction method of multipliers (ADMM) and are quite popular

in fields such as imaging science. We discuss the current lower complexity bounds of solving such

problems and suggest a potential method of improvement. By separating the computation of gradient

and operator evaluations, we propose two new sliding methods that improve upon the best known

convergence rates for such affinely constrained problems. Furthermore, we show that by carefully

combining our two new methods, we can obtain a single sliding ADMM method that attains a

stronger lower complexity bound for this problem class.
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Chapter 1

Introduction

This document is intent on finding an ε > 0 solution x̃ to the convex optimization problem

f∗ := min
x∈X

f(x) (CO)

such that f(x̃)−f∗ ≤ ε. Here, f : X → R is a convex, real-valued function, Rn is a high dimensional

space, and X ⊆ Rn is a convex, compact set with diameter DX , or Rn itself. Under the Euclidean

norm ||·||, we define

DX := sup
x,y∈X

||x− y|| <∞ (1.0.1)

when applicable. We restrict ourselves to deterministic first-order algorithms. Although the de-

terministic restriction makes a sizable cut in our class of algorithms, much of the well received

stochastic algorithms are based on a deterministic counterpart. Furthermore, since we assume that

n is large, we will find ourselves reluctant to accept algorithms that require higher order information

of f as the size of such information does not scale linearly with our problem size. With this issue

in mind, we will keep our study to algorithms that only utilize zero- and first-order evaluations of

f which we refer to as first-order algorithms. More precisely, the term “deterministic first-order

method” is defined by the following oracle description: we say that an iterative algorithm M for

a convex optimization problem (CO) is a deterministic first-order method if it accesses the infor-

mation of objective function f through a deterministic first-order oracle Of : R × Rn, such that

Of (x) = (f(x), f ′(x)) for any inquiry x, where f ′(x) is a subgradient of f at x. Specifically, M can
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be described by a problem independent initial iterate x0 and a sequence of rules {It}∞t=0 such that

xt+1 = It(Of (x0), . . . , Of (xt)), ∀t ≥ 0.

The computational performance of M is evaluated through its solution accuracy f(x̃)−f∗, in which

x̃ is an approximate solution computed by M. Without loss of generality, we can assume that xt’s

are both inquiry points to the oracle O and the approximate solution computed by M.

First-order convex optimization in high dimensional spaces is an incredibly active area of

research with far reaching applications particularly in the last 30 years. First-order methods have

the potential to provide approximate solutions to convex problems while maintaining a low computa-

tional complexity. This is in great contrast to higher order methods such as interior point or Newton

based methods which provide near exact solutions (i.e. machine precision error) at a slightly higher

computational complexity. First-order methods have developed at an accelerated rate recently due

to the rising popularity of applications such as machine learning, signal processing, medical imaging,

and others. These applications often have large dimension and make higher order methods infeasi-

ble. Additionally, applications such as machine learning only require an approximate solution to a

problem modeled as (CO) since the model itself is only an approximation to an underlying problem

instance. These characteristics make first-order optimization an ideal candidate for solving such

applications.

Our research throughout this document is be focused on both the lower and upper complexity

bounds of different algorithms and problem settings. For convex optimization problems, the lower

complexity bound is concerned with the least number of inquiries to the deterministic first-order

oracle in order to compute an ε-approximate solution x̃ such that f(x̃)− f∗ ≤ ε in the asymptotic

sense. On the other hand, an upper complexity bound is a depiction of achievable computational

performance on solving a specified class of problems by use of a particular algorithm. If the lower

complexity bound of a problem class matches the upper complexity bound achieved by a specific

algorithm when applied to the aforementioned problem class, we say that said algorithm is optimal

for this problem class under the associated oracle. One important aspect of both complexity bounds

is the oracle used. By choosing an oracle appropriately, we can simply and accurately portray the

complexity behavior of algorithms.

Throughout this document, we consider different settings of (CO) in which we assume

2



additional properties of f and X. For example, f can be assumed to be sufficiently smooth or

strongly convex while X may be assumed to be well structured in order to achieve faster algorithms.

While these assumptions restrict our class of problems we can solve, they also potentially accelerate

the speed at which we can solve them. This trade-off between algorithm breadth and computational

complexity is critical in the discussion of first-order optimization techniques. As we assume more

about f or X, our problem class will therefore shrink, and we may potentially achieve a better

complexity bound than in the unrestricted setting. However, additional assumptions prevent us

from designing truly blackbox algorithms and reduce the number of practical applications. To this

end, we prefer to only explore new algorithms under the assumption of additional properties of f

and X if our additional assumptions are common in practice and an improved upper bound can be

established. The rest of this thesis is organized as follows. In Chapter 2 we introduce Nesterov’s

accelerated gradient descent algorithm and some extensions of the algorithm under different problem

settings, in Chapters 3 and 4 we develop new first-order optimization results based upon the well-

established methods in Chapter 2 with numerical experiments where appropriate, and in Chapter 5

we summarize the newly developed results with concluding remarks.
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Chapter 2

Nesterov’s Accelerated Gradient

Method and its Extensions

Let us begin exploring methods for solving (CO) under the assumption that f is L-smooth,

i.e. f is differentiable and ∇f is Lipschitz continuous with Lipschitz constant L > 0. For convex

functions in particular, this is equivalent to

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2 (2.0.1)

for any x, y ∈ X. We also assume that the projection problem

ΠX(y) = Π(y) := argmin
x∈X

||x− y||2 (2.0.2)

is easy to solve. These two assumptions are quite common in first-order methods and will be the

focus in future sections. We refer to problems of (CO) with the L-smoothness assumption as smooth

convex optimization. In practice, both L-smoothness and a computationally feasible projection

problem are commonplace. Among machine learning in particular, loss functions are frequently

modeled using some p-norm, and unit balls/standard simplices are common feasible sets which

satisfy this assumption(see [1] for examples). Under this setting, we present Nesterov’s accelerated

gradient descent algorithm (NAGD) in Algorithm 2.1.

A few remarks can be made regarding NAGD. First, the motivation for each iteration is

4



Algorithm 2.1 Nesterov’s accelerated gradient descent (NAGD)

Start: Select parameters γk ∈ (0, 1], ηk > 0. Choose x0 ∈ X. Set y0 := x0
for k = 1, . . . , N do

zk =(1− γk)yk−1 + γkxk−1 (2.0.3)

xk =argmin
u∈X

⟨∇f(zk), u⟩+
ηk
2
∥u− xk−1∥2 (2.0.4)

yk =(1− γk)yk−1 + γkxk. (2.0.5)

end for
Output yN .

simple: rather than attempting to minimize f directly, we instead iteratively minimize its linear

approximation at some point along with a proximal term to keep us close to our previous iterate.

Indeed, the subproblem in (2.0.4) is the sum of the linear approximation of f at zk and a penalty

term that decreases as u approaches xk−1. To allow further algorithmic flexibility, NAGD introduces

convex combinations zk and yk in (2.0.3), (2.0.5) that facilitate what linear approximation we use

and what point to output as our solution, respectively. Second, note that the computation of xk can

be rewritten as a projection

xk = argmin
u∈X

⟨∇f(zk), u⟩+
ηk
2
∥u− xk−1∥2

= argmin
u∈X

∣∣∣∣∣∣∣∣u−
(
xk−1 −

1

ηk
∇f(zk)

)∣∣∣∣∣∣∣∣2
= Π

(
xk−1 −

1

ηk
∇f(zk)

)

Since we assumed the projection to be easy to solve, the only significant computational cost per

iteration of NAGD is the gradient evaluation in computing xk. Third, if γk ≡ 1, then zk = xk−1, yk =

xk and xk reduces to a projected gradient descent step. That is, NAGD is equivalent to projected

gradient descent with step size 1
ηk

whenever γk ≡ 1 (see [2]).

The convergence analysis of NAGD is well studied. Originally established in [3] and revisited

in [4, 5], the following results are proven in [5].

Theorem 2.1. Suppose that we apply NAGD to solve (CO) with parameter γk ∈ [0, 1]. Then the

5



k-th iterates satisfy

f(yk)− (1− γk)f(yk−1)− γkf(x) ≤ γkηk

(
||x− xk−1||2 − ||x− xk||2

)
+
Lγ2k − ηkγk

2
||xk − xk−1||2 .

(2.0.6)

Proof. By Lipschitz continuity of gradients and convexity, we have the following:

f(yk) ≤ f(zk) + ⟨∇f(zk), yk − zk⟩+
L

2
||yk − zk||2 (2.0.7)

f(yk−1) ≥ f(zk) + ⟨∇f(zk), yk−1 − zk⟩ (2.0.8)

f(x) ≥ f(zk) + ⟨∇f(zk), x− zk⟩. (2.0.9)

Each inequality (2.0.7), (2.0.8), and (2.0.9) follows immediately from convexity of f and (2.0.1).

With these inequalities in hand, we write

f(yk)− (1− γk)f(yk−1)− γkf(x) ≤ f(zk) + ⟨∇f(zk), yk − zk⟩+
L

2
||yk − zk||2

− (1− γk)(f(zk) + ⟨∇f(zk), yk−1 − zk⟩)

− γk(f(zk) + ⟨∇f(zk), x− zk⟩).

After simplifying and noting yk − zk = γk(xk − xk−1) from (2.0.5) and (2.0.3), we have

f(yk)− (1− γk)f(yk−1)− γkf(x) ≤ ⟨∇f(zk), yk − (1− γk)yk−1 − γkx⟩+
Lγ2k
2

||xk − xk−1||2

= γk⟨∇f(zk), xk − x⟩+ Lγ2k
2

||xk − xk−1||2 .

Here, we make use of the definition of yk in (2.0.5) in the final step. Enforcing the optimality

conditions of xk in (2.0.4) to γk⟨∇f(zk), xk − x⟩, we obtain

f(yk)− (1− γk)f(yk−1)− γkf(x) ≤ γkηk

(
||x− xk−1||2 − ||x− xk||2

)
+
Lγ2k − ηkγk

2
||xk − xk−1||2

which completes our proof.

We now provide two different settings of γk and ηk and analyze the convergence rate of

NAGD under these parameters.

6



Corollary 2.1. If we set

γk ≡ 1 and ηk ≡ L

in NAGD, then

f(ỹN )− f(x∗) ≤ L ||x∗ − x0||2

N + 1

where ỹN =
∑N

k=0 yk/(N + 1).

Proof. Note that by convexity of f ,

f(ỹN ) = f

(∑N
k=0 yk
N + 1

)
≤ 1

N + 1

N∑
k=0

f(yk).

Thus, to prove the corollary, it suffices to show that

1

N + 1

(
N∑

k=0

f(yk)

)
− f(x∗) ≤ L ||x∗ − x0||2

N + 1
.

Following the result of Theorem 2.1 with γk ≡ 1 and ηk ≡ L, (2.0.6) becomes

f(yk)− f(x) ≤ L
(
||x− xk−1||2 − ||x− xk||2

)
(2.0.10)

Summing (2.0.10) over all k, the right hand side becomes a telescoping sum to yield

(
N∑

k=0

f(yk)

)
− (N + 1)f(x) ≤ L

(
||x− x0||2 − ||x− xN ||2

)
≤ L ||x− x0||2 .

Setting x = x∗ and dividing by (N + 1) gives the desired result.

Corollary 2.2. If we set

γk =
2

k + 1
and ηk =

2L

k
(2.0.11)

in NAGD, then

f(yN )− f(x∗) ≤ 4L

N(N + 1)
||x∗ − x0||2 .

Proof. Letting x = x∗ in (2.0.6), noting from (2.0.11) that 1− γk = (k− 1)/(k+1), and multiplying

7



by k(k + 1), we have

k(k + 1) (f(yk)− f(x∗))− k(k − 1) (f(yk−1)− f(x∗)) ≤ 4L
[
||x∗ − xk−1||2 − ||x∗ − xk||2

]

Summing over k gives us telescoping series that evaluate to

N(N + 1) (f(yN )− f(x∗)) ≤ 4L ||x∗ − x0||2 − 4L ||x∗ − xN ||2 ≤ 4L ||x∗ − x0||2

which immediately concludes our result.

Corollary 2.1 shows that we can prove a O(L/ε) convergence result for projected gradient

descent using the NAGD framework. However, by choosing γk and ηk more aggressively, we can

achieve the accelerated complexity of only O(
√
L/ε) first-order oracle calls as shown in Corollary

2.2. As a result, NAGD establishes an upper complexity bound for (CO) with an L-smoothness

assumption in (2.0.1). While the accelerated convergence rate is indeed a powerful result, [6] by

Nemirovski established a lower complexity bound for such a problem class under the first-order

oracle assumption. The proof technique for a lower complexity bound alone is one worth reviewing.

In order to construct a lower complexity bound for a problem class, it is sufficient to find

a problem instance such that any first-order method struggles to solve it. Nemirovski achieved

the latter by constructing a sequence of problem instances such that for any particular first-order

method M, each iterate x1, . . . , xk was guaranteed to lie in a particular subspace. By showing

that the minimizer among this particular subspace yields an objective value sufficiently far away

from the global minimizer, Nemirovski concluded in [6] that no first-order method could achieve

better guaranteed performance than the accelerated one given by NAGD. In particular, Nemirovski

proved that for any first-order iterative method M which generates iterates using the first-order

oracle assumption, there existed an objective function such that M requires Ω(
√
L/ε) oracle calls

to find an ε-approximate solution. With both an upper and lower complexity bound on the order of

O(
√
L/ε), we conclude that NAGD is optimal for L-smooth instances of (CO) under the first-order

oracle. This analysis of the optimality of an algorithm on particular problem classes under certain

oracle assumptions will be crucial for improvement in Chapters 3 and 4.

Although NAGD is an optimal first-order method for smooth convex optimization with

respect to the first-order oracle, we can continue to extend its usefulness. In this chapter, we explore

8



some state-of-the-art methods that are immediate adaptations of the NAGD algorithm.

2.1 Universal Gradient Methods

One important assumption for the convergence of NAGD is the smoothness of f . In both

the convergence results of Corollary 2.2 and its corresponding parameter setting, the Lipschitz

smoothness in (2.0.1) is used quite crucially. However, there are many instances where such Lipschitz

constant is not known, may not exist, or the function may not even be differentiable. For example,

quadratic objectives of the form

f(x) =
1

2
xTAx− bTx

are Lipschitz smooth with constant L = ||A||. Explicitly finding L, however, is by no means a trivial

task, especially when n is large. In other cases, certain regularization terms in machine learning

are modeled using ℓ1 norms which themselves are nondifferentiable. To allow ourselves further

application of accelerated gradient methods, we will need to relax the L-smoothness assumption.

One such possibility is the class of functions with Hölder continuous gradients. Instead of

assuming the inequality in (2.0.1), we instead impose the generalized assumption

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Mν

1 + ν
||x− y||1+ν

, ∀x, y ∈ X. (2.1.1)

for some Hölder exponent ν ∈ (0, 1] and constant Mν > 0 along with the previous assumption that

X is easy to project to. We refer to functions satisfying (2.0.1) as Hölder smooth which covers both

smooth (ν = 1) and weakly smooth (ν ∈ (0, 1)) cases. In this section and in Chapter 3 to follow,

we may also allow for the nonsmooth case (ν = 0) by replacing ∇f with a subgradient f ′, but

these instances are left out for brevity. Nesterov proposed the Universal Gradient Method (UGM)

in Algorithm 2.2 for solving (CO) under the Hölder smoothness assumption.

A few immediate remarks can be made regarding UGM. First, if we assume that f is L-

smooth with known constant L, then letting Lk ≡ L immediately reduces UGM to NAGD. However,

under the Hölder smoothness assumption, we may not have access to such L. Second, to alleviate

this issue, Nesterov proposes to find an approximate Lk that satisfies an approximate Lipschitz

inequality (2.0.1) locally. Rather than requiring Lk to satisfy (2.0.1) for any x, y ∈ X, we only

require that it satisfy the approximate Lipschitz inequality (2.0.1) at yk and zk. Third, we must

9



Algorithm 2.2 Universal Gradient Method (UGM)

Start: Select parameters γk ∈ (0, 1], ηk > 0. Choose x0 ∈ X and ε > 0. Set y0 = x0
for k = 1, . . . , N do

Decide Lk > 0 satisfying

f(yk) ≤ f(zk) + ⟨∇f(zk), yk − zk⟩+
Lk

2
||yk − zk||2 +

ε

2
γk (2.1.2)

where

zk =(1− γk)yk−1 + γkxk−1,

xk =argmin
u∈X

⟨∇f(zk), u⟩+
ηk
2
∥u− xk−1∥2,

yk =(1− γk)yk−1 + γkxk.

end for
Output yN .

specify how Lk is chosen. UGM proposes to search Lk through a backtracking linesearch strategy. In

particular, we initialize with any L0 ∈ R and choose L1 = 2iL0 where i is the smallest integer such

that (2.1.2) is satisfied. At the start of the k-th outer iteration where k > 1, we set Lk = Lk−1/2

and assess the validity of Lk. If it does not satisfy (2.1.2), we keep backtracking and replacing

Lk to 2Lk until (2.1.2) is satisfied. Fourth, it can be shown that this backtracking procedure only

adds a negligible logarithmic term to our complexity and thus such a procedure will not affect our

theoretical complexity. Finally, although UGM closely resembles that of NAGD, we should expect

performance at least as slow as NAGD since we now cover a broader class of problems.

Indeed, it has been shown in [7] that UGM computes an ε-solution in at mostO((Mν/ε)
2

1+3ν )

first-order oracle calls. When ν = 1, this matches the lower complexity bound of smooth convex

optimization. Furthermore, the classical iteration complexity theory [6] has established that the

lower complexity bound on the number of gradient evaluations of ∇f is

Ω
(
(Mν/ε)

2
1+3ν

)
(2.1.3)

for computing an ε-solution. Thus, UGM is an optimal algorithm for solving Hölder smooth instances

of (CO) with respect to the first-order oracle. In addition, UGM does not require the knowledge of

Hölder constants ν or Mν which makes it in some ways more robust than its NAGD counterpart.

We will revist universal methods again in Chapter 3.
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2.2 Conditional Gradient Methods

In both NAGD and UGM, we assumed that the projection problem (2.0.2) was easy to

solve for our feasible set X. Both algorithms are efficient in the sense that they do not require

many gradient evaluations. However, there are many cases where the projection is computationally

expensive. Take, for example, X = conv(v1, . . . , vp) for some p ∈ N. For suitably large p, the

projection problem for X is a quadratic program which can be difficult to solve. In particular,

if f itself is a quadratic, the projection onto the convex hull can be more difficult to solve than

minimizing f . For such problem instances, NAGD and UGM are of little use. In order to have any

progress in this direction, we must look for algorithms which do not require a projection, namely

projection-free methods.

In 1956, Frank and Wolfe developed one of the earliest first-order methods for solving general

convex programming problems without the use of projections (see [8]). They proposed Algorithm

2.3 below for solving (CO) under the L-smoothness assumption and compactness of X.

Algorithm 2.3 Conditional Gradient (CG) method

Start: Select parameters γk ∈ (0, 1], ηk > 0. Choose y0 ∈ X.
for k = 1, . . . , N do

xk = argmin
x∈X

⟨∇f(yk−1), x⟩ (2.2.1)

yk = (1− αk)yk−1 + αkxk

end for
Output yN .

The Conditional Gradient (CG) algorithm (also sometimes called Frank-Wolfe or FW),

removes the proximal term from the xk subproblem and chooses to only solve a linear optimization

problem over X instead of a projection. The proximal term in (2.0.4) was useful in ensuring that

future iterates maintain information from previous iterates, but also made the subproblem potentially

computationally infeasible by adding an extra quadratic term. Accordingly, one should expect that

CG requires more iterations to compute an ε-solution to (CO), but the cost per iteration no longer

includes a projection. Instead, the potentially expensive operations are gradient evaluations, and

linear optimization problems. For many problem settings, a linear optimization problem is far more

computationally feasible than a projection. Indeed, a linear optimization over the convex hull set

previously discussed is simply a linear program. It is shown in [9] that for properly chosen αk,
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CG can compute an ε-solution in O(LD2
X/ε) iterations. Noting that one CG iteration requires one

gradient evaluation, we see that although CG does require asymptotically more gradient evaluations

for an approximate solution, it does not require any projections. Furthermore, it is also shown in

[9] that any algorithm which computes a solution xk via

yk ∈ Argmin
x∈X

⟨pk, x⟩

xk ∈ conv{y0, . . . , yk}

must make at least Ω(LD2
X/ε) linear optimization calls for an ε solution, which makes CG an optimal

algorithm in some sense.

We cannot, however, conclude that CG is optimal among first-order methods for gradient

evaluations. In fact, we know from the NAGD upper bound that only O(
√
LD2

X/ε) gradient evalu-

ations are required. It should also be noted that we include the D2
X here in the convergence result

since X must be compact in order for (2.2.1) to have an optimal solution. If one assumes compact-

ness in the previous section, similar diameter terms can be explicitly included. It remains to be

shown if one can design a projection-free method to compute an ε-solution with both the optimal

number of linear optimizations as well as the optimal number of gradient evaluations. In 2015, Lan

proposed the Conditional Gradient Sliding (CGS) method in Algorithm 2.4 to answer this question

(see [10]).

Algorithm 2.4 Conditional Gradient Sliding (CGS)

Start: Select parameters γk ∈ (0, 1], ηk > 0. Choose x0 ∈ X. Set y0 := x0
for k = 1, . . . , N do

zk =(1− γk)yk−1 + γkxk−1, (2.2.2)

xk =CndG(∇f(zk), xk−1, ηk, εk)

yk =(1− γk)yk−1 + γkxk. (2.2.3)

end for
Output yN .

The idea behind CGS is the following: NAGD provides us with a framework for solving (CO)

using an optimal number of gradient evaluations. If the projection subproblem can be addressed in

a projection-free way without any additional gradient evaluations, then such an algorithm would be

a projection-free method with the optimal number of gradient evaluations. Algorithm 2.4 simply
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Algorithm 2.5 Conditional Gradient for Projection Problems (CndG)

Initialize t = 1 and u0 = u.
while true do

Compute vt such that
max
x∈X

⟨g + β(ut−1 − u), vt − x⟩ ≤ 0 (2.2.4)

If
max
x∈X

⟨g + β(ut−1 − u), ut−1 − x⟩ ≤ η, (2.2.5)

terminate with u+ = ut−1. Otherwise, set

ut = (1− αt)ut−1 + αtvt

and t = t+ 1
end while

replaces xk with an approximate solution to the projection problem that is computed via a projection-

free method in CndG. Here, the CndG method in Algorithm 2.5 is a specialized variant of CG that

approximately solves the induced projection problem

min
x∈X

ϕ(x) := ⟨g, x⟩+ β

2
||x− u||2 . (2.2.6)

There is, however, one issue to be addressed with CGS. If CndG computes a rough approximation

xk to the projection problem, then the iterates zk, xk, and yk will no longer resemble those of the

original NAGD iterates. Thus, CGS may require more gradient evaluations to compute a good

solution yN . On the other hand, if CndG computes a precise solution to the projection problem,

then we will need to do many CndG iterations and may potentially require more linear optimizations.

Lan provided the following parameter setting himself in [10] that addressed both concerns.

Theorem 2.2. If βk, γk, and ηk in Algorithm 2.4 are set to

βk =
3L

k + 1
, γk =

3

k + 2
, and ηk =

LD2
X

k(k + 1)
,∀k ≥ 1,

then for any k ≥ 1,

f(yk)− f∗ ≤ 15LD2
X

2(k + 1)(k + 2)
.

As a consequence, with properly chosen αt, the total number of calls to the first-order and linear

optimization oracles performed by the CGS method for finding an ε-solution of (CO) can be bounded

by O(
√
LD2

X/ε) and O(LD2
X/ε) respectively.
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Thus, we conclude that CGS is optimal in both the number of gradient evaluations and linear

optimizations required. This idea of using NAGD as an algorithm template for only computing the

optimal number of gradient evaluations is a technique called sliding and was developed in 2010 by

Lan [11]. We will return to sliding algorithms Chapter 4.

2.3 Alternating Direction Method of Multipliers

We begin our final algorithm review with a more specialized problem class. For the rest of

this section, we will be considering problem instances of the form

F ∗ := min
x∈X

f(x) + h(Ax− b) (2.3.1)

where we introduce new constants A ∈ Rm×n and b ∈ Rm along with a Lipschitz continuous, but

possibly nonsmooth function h : Rn → R and assume that f : Rn → R is L-smooth. We also assume

that the projection mapping involving X and proximal mapping involving h are easy to solve, i.e.

(2.0.2) and

min
w∈Rm

h(w) +
ρ

2
||w − z||2

can be solved exactly with little computational cost. If we let F (x) = f(x) + h(Ax − b), then the

above problem falls under the model (CO) with additional structure. However, this specific problem

class in (2.3.1) is of particular interest since it is equivalent to an affinely constrained optimization

problem

F ∗ := min
(x,z)∈H

F (x, z) := f(x) + h(z) where H := { (x, z) ∈ X × Z | Kx− z = 0 } . (ACO)

Here we introduce an extra variable z ∈ Z ⊆ Rm to account for the linear operation Kx in the

original problem (2.3.1). Problems of the form in (ACO) have found numerous applications in

machine learning and image processing and are of specific interest. Specifically, the two-dimensional

total variation based image reconstruction problem arises in many settings. We will see this problem

in more detail in the numerical experiments for Chapter 4.

While problem (2.3.1) is equivalent to (ACO) with Z = Rm, our analysis of problem (ACO)

can be extended to a general closed convex set Z. By studying the augmented Lagrangian formula-
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tion of (ACO), namely,

L(ρ;u, v, w) = f(u) + h(w) + ⟨v,Ku− w⟩+ ρ

2
∥Ku− w∥2,

we can apply the classical alternating direction method of multipliers (ADMM) to solve (ACO).

The iterations of ADMM are described in Algorithm 2.6. In ADMM, the xk and zk steps minimize

Algorithm 2.6 Alternating direction method of multipliers (ADMM) for (ACO)

Start: Choose x0 ∈ X, y0 ∈ Rm, and z0 ∈ Z.
for k = 1, . . . , N do

Compute

xk =argmin
u∈X

Lρ(u, yk−1, zk−1), (2.3.2)

zk =argmin
w∈Rm

Lρ(xk, yk−1, w), (2.3.3)

yk =yk−1 + ρ(Kxk − zk). (2.3.4)

end for
Output xN .

the augmented Lagrangian Lρ(u, v, w) alternatively with respect to its primal variables. The yk

step is a dual ascent step on the dual of problem (ACO). First developed in [12, 13], the ADMM

described above can be understood as a two-block variant of the augmented Lagrangian method

(ALM) proposed in [14, 15]. There has been extensive study on the analysis of ALM and ADMM.

See, e.g., the monograph [16] and the references within for the review on ALM and ADMM. See

also [17, 18] and the references within for the convergence analysis of first-order method variants

of ADMM that uses gradient computations ∇f and linear operations (involving K and K⊤). It is

known that the rate of convergence of ADMM is on the order O((L+ ||K||)/k) (see [19, 20]).

However, it is possible that the projection problem involving xk is not easy to solve even

under our assumption that X is easy to project to. Specifically, the optimization problem in the xk

iteration (2.3.2) is

xk = argmin
u∈X

f(u) + ⟨K⊤yk−1, u⟩+
ρ

2
∥Ku− zk−1∥2.

The above problem is not necessarily easy to solve due to the function f(u) and the quadratic

term ∥Ku− zk−1∥2. To avoid solving such sophisticated problems, one may consider replacing the
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troublesome terms with their linear approximations:

xk =argmin
u∈X

⟨∇f(xk−1), u⟩+ ⟨K⊤yk−1, u⟩+ ρ⟨K⊤(Kxk−1 − zk−1), u⟩+
ηk
2
∥u− xk−1∥2

=argmin
u∈X

⟨∇f(xk−1) +K⊤(yk−1 + ρ(Kxk−1 − zk−1)), u⟩+
ηk
2
∥u− xk−1∥2.

Replacing the xk step in (2.3.2) by the above approximation, we obtain a variant of ADMM com-

monly known as the linearized ADMM (L-ADMM). The linearized ADMM can be analyzed through

the oracle complexity theory with oracle

O(x, y) = (f(x),∇f(x),Kx,KT y). (2.3.5)

Here, we choose to include Kx and KT y in the oracle since those matrix-vector multiplications may

be computationally expensive. Each iteration requires one inquiry on the gradient ∇f(xk−1) and

one inquiry on the matrix-vector multiplications involving K and K⊤ (note that it requires Kxk−1

and Kxk in each iteration but Kxk−1 can be treated as an inquiry that has already been made in

the previous iteration).

Some variants of linearized ADMM and their convergence analysis are studied in [17]. It is

proved that the aforementioned linearized ADMM has rate of convergence O((L+ ∥K∥)/k). More-

over, an accelerated linearized ADMM is proposed in [17] which has improved rate of convergence.

The key idea is based on the observation of the accelerated gradient method in (2.0.3)–(2.0.5) that

the introduction of convex combinations zk and yk can improve the rate of convergence when mini-

mizing smooth convex functions. The iterations of the accelerated linearized preconditioned ADMM

proposed in [17] for solving problem (2.3.1) is described in Algorithm 2.7.

We will refer to Algorithm 2.7 as the accelerated ADMM (A-ADMM). It is proved in [17]

that A-ADMM has rate of convergence O(L/k2 + ∥K∥/k). Such a rate is better than that of the

linearized ADMM, especially when L is much larger than ∥K∥. The key differences between the

A-ADMM and the L-ADMM that contributed to the improved rate are the introduction of zk and

yk, and the variable constants θk, τk and ρk (while in L-ADMM) θk ≡ τk ≡ ρk ≡ ρ). The A-ADMM

can also be analyzed through the oracle complexity theory; in each iteration it requires one inquiry

on the gradient ∇f(zk) and one inquiry on the matrix-vector multiplications involving K and K⊤.

With our previously defined oracle, we are now ready to review the efficiency of any first-
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Algorithm 2.7 Accelerated ADMM (A-ADMM) for (ACO)

Start: Choose x0 ∈ X. Set y0 := x0, y0 := 0, and z0 := Kx0.
for k = 1, . . . , N do

Compute

xk =(1− γk)x̄k−1 + γkxk−1,

xk =argmin
u∈X

⟨∇f(xk), u⟩+K⊤(yk−1 + θk(Kxk−1 − zk−1)), u⟩+
ηk
2
∥u− xk−1∥2

zk =argmin
w∈Rm

− ⟨yk−1, w⟩+ h(w) +
τk
2
∥Kxk − w∥2,

yk =yk−1 + ρk(Kxk − zk).

x̄k =(1− γk)x̄k−1 + γkxk.

end for
Output yN .

order methods for solving (ACO) that access information of the function f and the operator K

through the first-order oracle O. Under this oracle setting, L-ADMM requires at most O((L +

||K||)/ε) inquiries to O in (2.3.5) as was shown in [17]. It’s improved version A-ADMM, achieves a

better complexity with respect to the Lipschitz constant, namely O(
√
L/ε+ ||K|| /ε). In addition,

a worst-case instance of (2.3.1) was designed in [18] such that any first-order method that calls O in

(2.3.5) will need at least Ω(
√
L/ε+ ||K|| /ε) inquiries for an ε-solution. We can then conclude that

A-ADMM is theoretically unimprovable under our particular oracle assumption.
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Chapter 3

Universal Conditional Gradient

Sliding

In Chapter 2, we discussed a class of algorithms known as conditional gradient methods

for solving (CO) without the use of projections. These projection free methods were shown to be

optimal with respect to the number of linear optimizations required, and in the case of CGS in

Algorithm 2.4, also optimal with respect to the number of gradient evaluations. However, a key

assumption was that our objective function f satisfied the L-smooth inequality in (2.0.1). Also in

Chapter 2, we discussed methods of relaxing this condition. In this section, we attempt to combine

the two to design an optimal projection free algorithm which does not require the objective to be

L-smooth.

Let us restate our problem at hand. We study first-order projection free methods for com-

puting ε-approximate solutions to convex optimization problems of the form (CO) where X ⊆ Rn is

a high-dimensional compact, convex set, and f is a convex function that satisfies the Hölder smooth-

ness condition (2.1.1). For the general case when ν ∈ (0, 1], universal methods have been developed

in [21, 22] that compute ε-solutions with at most O((MνD
1+ν
X /ε)

1
ν ) gradient evaluations of ∇f and

linear objective optimization subproblems solves. Focusing on the number of gradient evaluations of

∇f required by the aforementioned projection-free methods, we can observe a significant gap with

the lower complexity bound in (2.1.3). For example, the number of gradient evaluations required

by the universal methods in [21, 22] is upper bounded by O(1/ε3) when ν = 1/3. This complexity
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is significantly worse than the lower complexity bound in (2.1.3) which is of order Ω(1/ε) when

ν = 1/3. For the special smooth case (when ν = 1), the number of gradient evaluations required by

the methods in [9, 23, 24] are upper bounded by O(1/ε) and is significantly worse than the O(1/
√
ε)

lower complexity bound in (2.1.3).

The conditional gradient sliding technique discussed previously allows us to close the gap

in the gradient evaluations whenever ν = 1. However, it remains to be seen if we can obtain the

O((MνD
2
X/ε)

2
1+3ν ) complexity for gradient evaluations in the weakly smooth case. In this chapter,

we propose to close the remaining gap in the gradient evaluations of∇f between its upper complexity

bounds in projection-free methods and the lower complexity bounds in (2.1.3). Specifically, we

propose a novel first-order projection-free method, namely the universal conditional gradient sliding

(UCGS) method, that is able to compute an ε-solution of the problem (CO) without requiring

any projections or knowledge of the smoothness information (ν,Mν). The framework of UCGS is

built around that of the universal gradient and conditional gradient sliding methods in [7] and [10],

respectively. The outline of this chapter is summarized below.

First, in terms of gradient evaluations of ∇f or calls to the first-order oracle, the total

number of evaluations required by the proposed UCGS method for computing an ε-solution is upper

bounded uniformly by O((MνD
1+ν
X /ε)

2
1+3ν ) for any ν ∈ (0, 1]. Such a bound matches the lower

complexity bound in (2.1.3). To the best of our knowledge, this is the first first-order projection-free

method that is able to achieve such gradient evaluation complexity bound uniformly for smooth and

weakly smooth convex optimization problems.

Second, the total number of calls to the linear optimization oracle required by the proposed

UCGS method for computing an ε-solution is upper bounded uniformly by O((MνD
1+ν
X /ε)

4
1+3ν ) for

any ν ∈ (0, 1]. Comparing with the O((MνD
1+ν
X /ϵ)

1
ν ) result [21, 22] in the literature, the proposed

UCGS method has the same complexity when ν = 1 and is significantly better for all ν ∈ (0, 1).

For example, when ν = 1/3, the UCGS method has a significantly better complexity of O(1/ε2)

compared the O(1/ε3) result in [21, 22]. Within the class of sliding-type algorithms following the

work of [10, 11], to the best of our knowledge, this is the first time a sliding-type algorithm is

able to improve not only the gradient complexity but also the overall complexity for computing an

approximate solution.

Third, the proposed UCGS method is able to achieve the aforementioned complexity bounds

without any knowledge of the smooth information (ν,Mν) of the objective function. Therefore, it is
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a universal method that is able to solve weakly smooth and smooth convex optimization problems

with the best possible ν ∈ (0, 1] and Mν > 0. Note that in the special smooth case when ν = 1,

the proposed UCGS method can be understood as an extension of the CGS method with additional

features for practical implementation. In such case, it has the same complexity results as the CGS

method and its backtracking linesearch edition in terms of both gradient evaluations of ∇f and

linear objective subproblems (see [25]). However, unlike the linesearch edition, by incorporating a

different backtracking linesearch strategy with a novel parameter choice, UCGS no longer require any

information on the continuity constant M1. UCGS also allows that all linear objective optimization

subproblems be solved approximately within certain accuracy while maintain the same complexity

results.

3.1 Conditional Gradient Sliding in the Hölder Case

In this section, we analyze the conditional gradient and conditional gradient sliding meth-

ods under the relaxed Hölder smooth condition. While CGS can already achieve better gradient

evaluation than that of CG for problems with Lipschitz continuous gradients, our result covers a

more general case of problems with Hölder continuous gradients. Moreover, we also show a theo-

retical result that CGS can also achieve better complexity on linear objective optimizations than

that of CG when the Hölder continuity exponent ν ∈ (0, 1). Such theoretical result is particularly

interesting within the class of sliding-type algorithms following the works of [10, 11]. To the best of

our knowledge, this is the first time a sliding-type algorithm is able to improve not only the gradient

complexity but also the overall complexity for computing an approximate solution.

Let us consider again the CGS algorithm in Algorithm 2.4 and make a few additional

remarks. First, in both Algorithms 2.4 and in the sequel, we refer to the operations between

increments in t as an inner iteration and that of k as an outer iteration. To distinguish inner and

outer iteration descriptions, we use subscripts and superscripts to denote outer and inner iteration

indices, respectively. Second, the relation (2.2.4) in the CndG procedure allows for both projection-

based and projection-free implementations. For example, if we require ηk ≡ 0, then the CndG

procedure solves a projection problem and the iterate xk computed by the procedure is an optimal
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solution to the projection problem

min
x∈X

ϕk(x) := ⟨∇f(zk), x⟩+
βk
2

||x− xk−1||2 .

Consequently, CGS reduces to a version of Nesterov’s accelerated gradient method in Algorithm

2.1 (see, e.g., [2]).Third, if βk ≡ 0, then satisfying the condition (2.2.4) becomes a linear objection

optimization and it takes exactly one inner iteration for CndG to compute an optimal solution to

this subproblem. Note that by the description of vt in (2.2.4), vt is the optimal solution to the linear

subproblem. If instead we allow the right hand side of (2.2.4) to be nonzero, then we can study

practical implementation variants of CG that solve the linear objective optimization subproblem

approximately (see, e.g., [24] and the references within). However, we will focus on theoretical

analysis in this section; the approximate linear subproblem implementation will be discussed in next

section.

In this section, we show that the CGS method can be applied to not only smooth, but

also weakly smooth problems. An interesting discovery we make use of this section, is that the

use of sliding also reduces the total number of inner iterations, and consequently linear objective

optimizations when the Hölder exponent ν ∈ (0, 1).

We now analyze the performance of Algorithm 2.4 under various parameter settings. We

begin by building a recurrence relation on the outer iterates. Such recurrence provides us a tool for

performing complexity analysis on CGS.

Proposition 3.1. Suppose that γk ∈ [0, 1] for all k in Algorithm 2.4. Then

f(yk)− (1− γk)f(yk−1)− γkf(x)

≤γkηk +
βkγk
2

(||xk−1 − x||2 − ||xk − x||2)

− βkγk
2

||xk − xk−1||2 +
Mνγ

1+ν
k

1 + ν
||xk − xk−1||1+ν

, ∀k ≥ 1, x ∈ X.

(3.1.1)

Specifically, if ν ∈ (0, 1) and βk > 0 for all k, then

f(yk)− (1− γk)f(yk−1)− γkf(x)

≤γkηk +
βkγk
2

(||xk−1 − x||2 − ||xk − x||2) + ξk, ∀k ≥ 1, x ∈ X,

(3.1.2)
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where

ξk :=
1− ν

2(1 + ν)
M

2
1−ν
ν

(
γk
βk

) 1+ν
1−ν

. (3.1.3)

Proof. From the Hölder condition (2.1.1) and the convexity of f we have

f(yk)− (1− γk)f(yk−1)− γkf(x)

≤f(zk) + ⟨∇f(zk), yk − zk⟩+
Mν

1 + ν
∥yk − zk∥1+ν

− (1− γk)(f(zk) + ⟨∇f(zk), yk−1 − zk⟩)− γk(f(zk) + ⟨∇f(zk), x− zk⟩)

=γk⟨∇f(zk), xk − x⟩+
Mνγ

1+ν
k

1 + ν
∥xk − xk−1∥1+ν .

Here the last equality is from the definitions of zk and yk in (2.2.2) and (2.2.3) respectively. Noting

that xk is computed from the CndG procedure which satisfies (2.2.5), we have

ηk ≥ ⟨∇f(zk) + βk(xk − xk−1), xk − x⟩

= ⟨∇f(zk), xk − x⟩+ βk
2
(∥xk − xk−1∥2 + ∥xk − x∥2 − ∥xk−1 − x∥2)

for any x ∈ X. Summarizing the above two relations we obtain (3.1.1). By Young’s inequality

(applied to the product of (βkγk/(1+ν))
(1+ν)/2)∥xk−xk−1∥1+ν andMν(γk/βk)

(1+ν)/2(1+ν)−(1−ν)/2

with exponents 2/(1 + ν) and 2/(1 − ν) respectively) we conclude the next result (3.1.2) from

(3.1.1).

In Proposition 3.1 above, there is a recurrence relation concerning weights (1 − γk). The

following notation is be used in the sequel for analyzing the complexity of CGS:

Γk =


1 k = 1

Γk−1(1− γk) k > 1.

. (3.1.4)

We use the following simple lemma for analyzing the sum of recurrent terms.

Lemma 3.1. Suppose that {ak}, {bk} ⊂ R and {γk} ⊂ [0, 1] are sequences that satisfy γ1 = 1 and

ak ≤ (1− γk)ak−1 + γkbk, ∀k ≥ 1. (3.1.5)
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Then we have

ak ≤ Γk

k∑
i=1

γi
Γi
bi, (3.1.6)

for all k ≥ 1.

Proof. Dividing both sides of (3.1.5) by Γk we obtain a series of inequalities with telescoping terms.

Summing up we obtain (3.1.6).

We are now ready to derive results on the complexity of CG as a special case of CGS.

Theorem 3.1 below is a known complexity result of CG for problems with Hölder continuous gradients

[21, 22].

Theorem 3.1 (see also [21, 22]). Suppose that we apply CGS in Algorithm 2.4 with parameters

βk ≡ 0, ηk ≡ 0, γk = 2/(k + 1) to compute an ε-solution to problem (CO) with Hölder exponent ν

and constant Mν . Then CGS requires at most Ngrad gradient evaluations and Nlin linear objective

optimizations, in which

Nlin = Ngrad = O

((
MνD

1+ν
X

ε

) 1
ν

)
. (3.1.7)

Proof. Since γk = 2/(k + 1), by (3.1.4) we have Γk = 2/(k(k + 1)) and hence γk/Γk = k. Applying

Proposition 3.1 and noting Lemma 3.1 with our parameter settings, we have for any x ∈ X that

f(yN )− f(x) ≤ 2Mν

N(N + 1)(1 + ν)

N∑
k=1

k

(
2

k + 1

)ν

∥xk − xk−1∥1+ν ≤ O
(
MνD

1+ν
X

Nν

)
.

Thus, in order to obtain an ε-solution, we require at most Ngrad outer iterations. Moreover, noting

that α1 = 1 and β = 0 in the CndG procedure, comparing (2.2.4) and (4.1.2) we observe that CndG

always terminates after one inner iteration. Therefore, the total number of gradient evaluations and

linear optimizations must both be upper bounded by (3.1.7).

As pointed in the remarks after the description of Algorithm 2.4, CGS with βk ≡ 0 reduces to

a CG variant with the same convergence results. Therefore, Theorem 3.1 above provides a complexity

result for the CG algorithm applied to functions with Hölder continuity exponent ν ∈ (0, 1]. One

achieves similar results to Theorem 3.1 when choosing different γk (e.g., γk = 1/k; see [21] for other

choices of γk). It should also be noted that the choice of ηk ≡ 0 does not affect the above analysis;
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indeed, with β = 0 and any η ≥ 0, the CndG procedure always terminates after one inner iteration.

However, as we describe below, if β > 0, the choice of η will affect the number of inner iterations

performed by the CndG procedure before termination. The proposition below is a known complexity

result (see Theorem 2.2(c) in [10]) of CG for solving projection problems. For completeness, we prove

it later as an immediate consequence of Proposition 3.3.

Proposition 3.2. In the CndG procedure for computing an approximate solution to the projection

problem (2.2.6), if choose αt = 2/(t+ 1), then

min
j=0,...,t

max
x∈X

⟨∇ϕ(uj), uj − x⟩ ≤ 6βD2
X

t
, ∀t ≥ 1.

Proposition 3.2 provides insight on the number of inner iterations required by the CndG

procedure in Algorithm 2.5 to solve the projection problem (2.2.6) approximately. For example,

if we set ηk ≥ 6βkD
2
X , then the CndG procedure always terminates after exactly one iteration.

Noting that u0 = u in CndG, we can observe that CGS reduces to CG not only when βk ≡ 0

(as stated previously in the remarks of CGS and after Theorem 3.1), but also when βk > 0 and

ηk ≥ 6βkD
2
X . The latter observation is important for our analysis: as described in the following

theorem, for problems with Hölder continuous exponent ν ∈ (0, 1), the latter observation allows

us to perform a simple analysis of CG that is different from the current literature [21, 22]. Such

simple analysis leads to our interesting discovery that sliding could improve the complexity of linear

objective optimizations.

Theorem 3.2 (see also [21, 22]). Assume in (CO) that the Hölder exponent ν ∈ (0, 1). Suppose

that we apply CGS in Algorithm 2.4 with parameters βk > 0, ηk = 6βkD
2
X , and α1 = 1 in Algorithm

2.5. Then we have for any x ∈ X that

f(yN )− f(x) ≤ΓN

N∑
k=1

βkγk
2Γk

(12D2
X + ||xk−1 − x||2 − ||xk − x||2)

+
1

Γk

1− ν

2(1 + ν)
M

2
1−ν
ν

(
γk
βk

) 1+ν
1−ν

.

(3.1.8)

Specifically, if we set βk = Mνγ
ν
k/D

1−ν
X and γk = 2/(k + 1), to compute an ε-solution to problem

(CO) with Hölder exponent ν and constant Mν , CGS requires at most Ngrad gradient evaluations

and Nlin linear objective optimizations, in which Nlin = Ngrad = O
((
MνD

1+ν
X /ε

) 1
ν

)
.
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Proof. Applying Proposition 3.1 and noting Lemma 3.1, with our choice of ηk we have (3.1.8).

Consequently,

f(yN )− f(x) ≤ΓN

N∑
k=1

7βkγkD
2
X

Γk
+

1

Γk

1− ν

2(1 + ν)
M

2
1−ν
ν

(
γk
βk

) 1+ν
1−ν

, ∀x ∈ X. (3.1.9)

Substituting to (3.1.9) the values of βk, γk, and noting Γk from (3.1.4), we have

f(yN )− f(x) ≤ O
(
MνD

1+ν
X

N2

) N∑
k=1

k

(k + 1)ν
≤ O

(
MνD

1+ν
X

Nν

)
.

Thus, in order to obtain an ε-solution, we require at most Ngrad outer iterations. Moreover, noting

that α1 = 1 and η = 6βD2
X in the CndG procedure, by Proposition 3.2 we observe that the

CndG procedure always terminates after one inner iteration. Therefore the total number of linear

optimizations is upper bounded by Nlin = Ngrad.

In the above theorem, we observe an imperfection by in the derivation from (3.1.8) and

(3.1.9), although we obtain the same complexity result of CG as in Theorem 3.1. Specifically, due

to the existence of the dominant term D2
X , we can only simply bound the telescoping difference

(||xk−1 − x||2−||xk − x||2) by D2
X to obtain (3.1.9). As a consequence, even if we attempt to choose

the best βk = O(Mνγ
ν
k/D

1−ν
X ) to minimize the right hand side of (3.1.9), the complexity result

remains to be O
((
MνD

1+ν
X /ε

) 1
ν

)
. Noting that the imperfection we observe is due to the choice

that ηk = 6βkD
2
X , we may choose a smaller ηk setting to improve the complexity results, as stated

in the theorem below.

Theorem 3.3. Assume in problem (CO) that the Hölder exponent ν ∈ (0, 1). Suppose that we

apply CGS in Algorithm 2.4 with parameters

βk =
Mνk

1−3ν
2

D1−ν
X

, ηk =
6βkD

2
X

k
, and γk =

2

k + 1
.

Then, to compute an ε-solution to problem (CO) with Hölder exponent ν and constant Mν , CGS

requires at most Ngrad gradient evaluations and Nlin linear objective optimizations, in which

Ngrad = O

((
MνD

1+ν
X

ε

) 2
1+3ν

)
and Nlin = O

((
MνD

1+ν
X

ε

) 4
1+3ν

)
.
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for any ν ∈ (0, 1).

Proof. Since γk = 2/(k + 1), we have Γk = 2/(k(k + 1)) and hence γk/Γk = k. Applying Proposition

3.1 and noting Lemma 3.1, with our choice of parameters

f(yN )− f(x) ≤ 2

N(N + 1)

N∑
k=1

6βkD
2
X +

kβk
2

(
||xk−1 − x||2 − ||xk − x||2

)
+
ξk
Γk
, ∀x ∈ X.

Noting that kβk is increasing, we have

N∑
k=1

kβk

(
||xk−1 − x||2 − ||xk − x||2

)
=β1∥x0 − x∥2 +

N∑
k=1

((k + 1)βk+1 − kβk)∥xk − x∥2 −NβN∥xN − x∥2

≤β1D2
X +

N∑
k=1

((k + 1)βk+1 − kβk)D
2
X = NβND

2
X .

Combining the above two relations and noting our choice of βk and the description of ξk in (3.1.3)

we have

f(yN )− f(x) ≤O
(
MνD

1+ν
X

N2

) N∑
k=1

k
1−3ν

2 +N
3−3ν

2 +

N∑
k=1

k
1+3ν2

2(1−ν)

(k + 1)
2ν

1−ν

 , ∀x ∈ X. (3.1.10)

Thus, to obtain an ε-solution, we need at most Ngrad outer iterations, or equivalently, at most Ngrad

gradient evaluations. Also, from Proposition 3.2, if ηk = 6βkD
2
X/k, then we perform at most k inner

iterations per outer iteration. Thus, the total number of inner iterations and consequently linear

objective optimizations is upper bounded by

Ngrad∑
k=1

k ≤ O(N2
grad) = O

((
MνD

1+ν
X

ε

) 4
1+3ν

)
.

The proof is now complete.

Note that by the choice of ηk and Proposition 3.2, Theorem 3.3 provides a complexity result

for a version of CGS with the sliding feature for solving problem (CO). Comparing Theorems 3.2

and 3.3, the key difference in the proofs is the additional 1/k factor in ηk in Theorem 3.3. With
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the additional factor, the three terms at the right hand side of (3.1.10) are of the same order with

respect to N , resolving the imperfection we noticed previously in (3.1.9) in the proof of Theorem 3.2.

In doing so, we achieve the optimal lower complexity bound of gradient evaluations (2.1.3) for first-

order methods. Interestingly, we can discover that the number of linear optimizations required in

Theorem 3.3 is also significantly reduced comparing with that in Theorem 3.2, since 4/(1+3ν) < 1/ν

for all ν ∈ (0, 1).

It should be noted that we exclude the case ν = 1 case in Theorem 3.3 only for convenience

of our analysis, since our focus in this section is mainly the theoretical analysis on improving the

state-of-the-art complexity bounds [21, 22] when ν ∈ (0, 1). By slightly modifying the proof of

Theorem 3.3 we can also achieve the same complexity results as the state-of-the-art in [10]. We

include the ν = 1 case in the convergence analysis of practical implementation in the next section.

We conclude this section with several comments regarding the implementation of CGS in

Algorithm 2.4. Note that the sliding result shown in Theorem 3.3 requires a parameter choice

βk that assumes the knowledge of Hölder exponent ν ∈ (0, 1) and constant Mν . Unfortunately,

the knowledge of the best ν and Mν for the performance of CGS may not be easily accessible in

practice. Furthermore, the proposed Algorithm 2.4 has no termination criterion for verifying whether

the current approximate solution yk is an ε-solution. Lastly, there may exist problem instances in

which a solution vt to the linear subproblem (2.2.4) cannot be computed exactly and instead we

can only compute an approximate solution. In the next section, we propose an algorithm called

universal conditional gradient sliding (UCGS) that utilizes a backtracking linesearch scheme with

an implementable stopping criterion to achieve better practical performance than Algorithm 2.4.

We also analyze its convergence under an approximate solution to linear subproblem (2.2.4).

3.2 The Universal Conditional Gradient Sliding Method

In this section, we propose a practical universal conditional gradient sliding (UCGS) method

that addresses the above issues of CGS. The proposed UCGS algorithm is described in Algorithm

3.1.
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Algorithm 3.1 Universal conditional gradient sliding (UCGS) method
Start: Choose tolerance ε > 0 and initial iteration x0 ∈ X. Set y0 = x0.
for k = 1, 2, . . . , do

Decide Lk > 0 such that

f(yk) ≤ f(zk) + ⟨∇f(zk), yk − zk⟩+
Lk

2
||yk − zk||2 +

ε

2
γk (3.2.1)

where

γk :=

{
1, k = 1

positive solution to Γk−1(1− γk) =
Lkγ

2
k

k
, k > 1

(3.2.2)

zk := (1− γk)yk−1 + γkxk−1 (3.2.3)

xk := ACndG(∇f(zk), xk−1, βk, ηk) (3.2.4)

yk := (1− γk)yk−1 + γkxk (3.2.5)

Γk :=
Lkγ

2
k

k
. (3.2.6)

Compute an approximate solution sk to the problem

min
x∈X

ℓk(x) := Γk

k∑
i=1

γi

Γi
(f(zi) + ⟨∇f(zi), x− zi⟩) (3.2.7)

such that ℓk(sk)−minx∈X ℓk(x) ≤ εk. Terminate and output yk as an approximate solution if

f(yk)− ℓk(sk) + εk ≤ ε. (3.2.8)

end for

procedure u+ = ACndG(g, u, β, η)
Goal: Compute u+ such that maxx∈X⟨∇ϕ(u+), u+ − x⟩ ≤ η, where

ϕ(x) := ⟨g, x⟩+
β

2
∥x− u∥2. (3.2.9)

Start: Set u0 = u.
for t = 1, 2, . . . , do

Compute a δt-approximate solution vt to the problem minx∈X⟨∇ϕ(ut−1), x⟩ such that

⟨g + β(ut−1 − u), vt⟩ − min
x∈X

⟨g + β(ut−1 − u), x⟩ ≤ δt. (3.2.10)

Terminate with u+ := ut−1 if

⟨g + β(ut−1 − u), ut−1 − vt⟩+ δt ≤ η. (3.2.11)

Otherwise, compute ut = (1− αt)ut−1 + αtvt.
end for

end procedure
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Let us make a few remarks regarding Algorithm 3.1. First, the approximate conditional

gradient method (ACndG) procedure in Algorithm 3.1 is a generalization of the CndG procedure

discussed in the previous section. Specifically, whenever δt ≡ 0, ACndG and CndG are equivalent.

Note also that an appropriate choice for parameter αt can be computed through an exact linesearch,

namely,

αt := min

{
1,

⟨g − β(u− ut−1), ut−1 − vt⟩
β ||vt − ut−1||2

}
. (3.2.12)

It is easy to observe that the above αt is the optimal solution to the exact linesearch problem

minα∈[0,1] ϕ((1− α)ut−1 + αvt). Second, if the objective function f in problem (CO) has Lipschitz

continuous gradient (so ν = 1) with Lipschitz constant M1, then UCGS can be understood as

extension of CGS with added features for practical implementation. The new features include a

backtracking linesearch strategy that computes adaptive estimates Lk for the Lipschitz constantM1,

the possibility of computing only approximate solutions to linear subproblems, and a termination

criterion for verifying whether an approximate solution to problem (CO) has been computed. Third,

the choice of γk and Γk in (3.2.6) and (3.2.2) implies that (3.1.4) holds.

Furthermore, it can be shown that for k > 1, the solution to (3.2.2) is given by

γk =
2
√
kΓk−1√

4Lk + kΓk−1 +
√
kΓk−1

.

Observe that γk ∈ (0, 1). Consequently, the recursively described approximate solution yk is the

convex combination of x1, . . . , xk. Also the point zk for gradient evaluation is a convex combination

of x1, . . . , xk−1. Such recursive description first appeared in Nesterov’s seminal accelerated gradient

algorithm (see, e.g., [2]) and is also used in the CGS algorithm [10] and the universal gradient

algorithms studied in [7]. However, our choice of γk is novel and is different from the ones in

[7, 10, 2]. In fact, to our knowledge, none of the settings of γk in [7, 2, 10] are suitable for CGS-

type algorithms with adaptive Lk. In the only previous work [25] that successfully developed a

linesearch scheme for CGS, γk needs to satisfy a more sophisticated cubic equation and Lk needs to

be monotone increasing. As we describe below, such monotonicity restriction on Lk is removed in

our proposed UCGS method.

A few remarks on the practical implementation of Algorithm 3.1 are also in place. First,

29



Algorithm 3.1 proposes that we find Lk > 0 such that (3.2.1) is satisfied. The condition (3.2.1)

originated from the framework of inexact oracle in [26] and is also used in [7]. We proposed to

search for such Lk through the same backtracking linesearch strategy in the discussion surrounding

Algorithm 2.2. Through this backtracking linesearch strategy, we ensure that our choice of Lk

is adaptive and that performance is independent of the choice of L0. Previous literature [25] on

backtracking linesearch strategy of CGS require monotonicity of Lk and may suffer from a poorly

chosen L0. Second, our termination criterion is based on (3.2.8). We can observe immediately that if

the parameter εk ≡ 0, i.e., sk is the exact solution to problem (3.2.7), then when (3.2.8) is satisfied,

yk will be ε-approximation solution to problem (CO). To see this, note from (3.1.4) that

Γk

k∑
i=1

γi
Γi

= 1 (3.2.13)

and consequently

f(yk)− f∗ ≤ f(yk)−min
x∈X

ℓk(x) = f(yk)− ℓk(sk).

Such termination criterion also appeared in the previous literature (see, e.g., [7, 25]). For the case

when εk > 0, we show later in Theorem 3.4 that allowing approximate solution sk with properly

chosen accuracy εk will not affect the complexity results of UCGS.

We present convergence analysis for the UCGS algorithm proposed above, beginning with

some results on the inner iteration complexity. The following lemma resembles a combination of

the proofs of Theorem 2.2(c) in [10] and Theorem 5.2 in [24] on the analysis of conditional gradient

method with approximate linear objective optimization subproblems for solving projection problems.

Lemma 3.2. Suppose that λt ∈ [0, 1] is any predetermined sequence satisfying λ1 = 1. In the

ACndG procedure, if αt is chosen such that

ϕ(ut) ≤ ϕ((1− λt)ut−1 + λtvt), ∀t ≥ 1, (3.2.14)
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then we have

t∑
j=2

λj

Λj
max
x∈X

⟨∇ϕ(uj−1), uj−1 − x⟩ ≤

δ1 + t∑
j=2

λj

Λj

(
δj + Λj−1

j−1∑
i=1

λi

Λi
δi

)
+
βD2

X

2

1 + t∑
j=2

λj

Λj

(
λj + Λj−1

j−1∑
i=1

(λi)2

Λi

)
for all t ≥ 2, where

Λt :=


1 when t = 1

Λt−1(1− λt) when t > 1.

(3.2.15)

Proof. Observing that the function ϕ(x) in (3.2.9) is a strongly convex function with Lipschitz

continuous (with constant β) gradient, using the assumption (3.2.14), and noting the definition of

approximate solution vt in (3.2.10), we have

ϕ(ut)− (1− λt)ϕ(ut−1)− λt(ϕ(ut−1) + ⟨∇ϕ(ut−1), x− ut−1⟩)

≤ϕ((1− λt)ut−1 + λtvt)− ϕ(ut−1)− λt⟨∇ϕ(ut−1), x− ut−1⟩

≤λt⟨∇ϕ(ut−1), vt − ut−1⟩+ β(λt)2

2

∣∣∣∣vt − ut−1
∣∣∣∣2 − λt⟨∇ϕ(ut−1), x− ut−1⟩

=λt⟨∇ϕ(ut−1), vt − x⟩+ β(λt)2

2

∣∣∣∣vt − ut−1
∣∣∣∣2

≤λtδt + βD2
X(λt)2

2
, ∀x ∈ X, t ≥ 1.

(3.2.16)

Defining x∗ := argminx∈X ϕ(x), from the above relation we have for any t ≥ 2 that

t∑
j=2

λj

Λj
max
x∈X

⟨∇ϕ(uj−1), uj−1 − x⟩

≤
t∑

j=2

1

Λj
[ϕ(uj−1)− ϕ(x∗)]− 1

Λj
[ϕ(uj)− ϕ(x∗)] +

λj

Λj
δj +

βD2
X(λj)2

2Λj

=[ϕ(u1)− ϕ(x∗)]− 1

Λt
[ϕ(ut)− ϕ(x∗)]

+

t∑
j=2

λj

Λj
[ϕ(uj−1)− ϕ(x∗)] +

λj

Λj
δj +

βD2
X(λj)2

2Λj

≤[ϕ(u1)− ϕ(x∗)] +

t∑
j=2

λj

Λj
[ϕ(uj−1)− ϕ(x∗)] +

λj

Λj
δj +

βD2
X(λj)2

2Λj
.

(3.2.17)
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Here in the equality we use the following observations from the definition of Λt in (3.2.15): 1/Λ1 = 1

and 1/Λj = 1/Λj−1 + λj/Λj for all j ≥ 2,

To finish the proof it suffices to bound ϕ(uj−1)− ϕ(x∗) for any j ≥ 2. Observing that ϕ(x)

in (3.2.9) is strongly convex and quadratic with

β

2

∣∣∣∣x− ut−1
∣∣∣∣2 = ϕ(x)− (ϕ(ut−1) + ⟨∇ϕ(ut−1), x− ut−1⟩), ∀x ∈ X, t ≥ 1,

we have from (3.2.16) (with x = x∗) that

[ϕ(ut)− ϕ(x∗)]− (1− λt)[ϕ(ut−1)− ϕ(x∗)] ≤ λtδt +
βD2

X(λt)2

2
− βλt

2

∣∣∣∣x∗ − ut−1
∣∣∣∣2 .

Applying Lemma 3.1 to the above recurrence relation and ignoring negative terms at the right hand

side, we have

ϕ(ut)− ϕ(x∗) ≤ Λt
t∑

i=1

λi

Λi
δi +

βD2
X(λi)2

2Λi
, ∀t ≥ 1.

We conclude the lemma immediately by applying the above bound to (3.2.17) and rearranging

terms.

The complexity result of the above lemma depends on a predetermined sequence {λt}. In

the proposition below, we provide a complexity result from an example choice of {λt}.

Proposition 3.3. In the ACndG procedure, at termination we have

max
x∈X

⟨∇ϕ(u+), u+ − x⟩ ≤ η. (3.2.18)

Moreover, if δt = σβD2
X/t for certain σ ≥ 0 and αt is chosen such that

ϕ(ut) ≤ ϕ

(
t− 1

t+ 1
ut−1 +

2

t+ 1
vt
)
, (3.2.19)
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then we have for any t ≥ 1 that

min
j=1,...,t+1

⟨∇ϕ(uj−1), uj−1 − vj⟩ ≤ min
j=1,...,t+1

max
x∈X

⟨∇ϕ(uj−1), uj−1 − x⟩

≤6(σ + 1)βD2
X

t
.

(3.2.20)

Specifically, it takes at most

T := 1 +

⌈
(7σ + 6)βD2

X

η

⌉
(3.2.21)

iterations for the ACndG procedure to terminate.

Proof. From the definition of the approximate solution vt in (3.2.10), if the termination criterion in

(3.2.11) of the ACndG procedure is satisfied, then the output u+ = ut−1 satisfies

max
x∈X

⟨∇ϕ(ut−1), ut−1 − x⟩ = max
x∈X

⟨∇ϕ(ut−1), ut−1 − vt⟩+ ⟨∇ϕ(ut−1), vt − x⟩

≤ (η − δt) + δt = η.

Therefore (3.2.18) holds. To conclude the proposition it suffices to estimate the rate of convergence

of

max
x∈X

⟨∇ϕ(ut−1), ut−1 − x⟩.

To analyze the rate, let us choose λt = 2/(t+ 1) and apply Lemma 3.2. Then Λt = 2/(t(t+ 1)) and

t∑
j=2

j · max
x∈X

⟨ϕ(uj−1), uj−1 − x⟩

≤σβD2
X

1 + t∑
j=2

(
1 +

2

j − 1

j−1∑
i=1

1

)+
βD2

X

2

1 + t∑
j=2

(
2j

j + 1
+

2

j − 1

j−1∑
i=1

2i

i+ 1

)
<σβD2

X(3t− 2) +
βD2

X

2
(6t− 5), ∀t ≥ 2.
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Noting that
∑t

j=2 j = (t+ 2)(t− 1)/2, we have

min
j=2,...,t

max
x∈X

⟨∇ϕ(uj−1), uj−1 − x⟩ ≤ 2

(t+ 2)(t− 1)

t∑
j=2

j · max
x∈X

⟨ϕ(uj−1), uj−1 − x⟩

<
6(σ + 1)βD2

X

t− 1
, ∀t ≥ 2.

Using the above result and observing that

min
j=1,...,t+1

⟨∇ϕ(uj−1), uj−1 − vj⟩ ≤ min
j=1,...,t+1

max
x∈X

⟨∇ϕ(uj−1), uj−1 − x⟩

≤ min
j=2,...,t+1

max
x∈X

⟨∇ϕ(uj−1), uj−1 − x⟩, ∀t ≥ 1

we conclude (3.2.20). Moreover, from (3.2.20) and noting the choice of δt, the termination criterion

(3.2.11) holds whenever

6(σ + 1)βD2
X

t− 1
+
σβD2

X

t
≤ η.

Noting the definition of T in (3.2.21), the above condition clearly holds for all t ≥ T .

In the above proposition, σ ≥ 0 in the definition of δt is a parameter related to the accuracy

of approximately solving linear objective optimization subproblems. Note that there may also exist

other possible choice of δt. For example, similar complexity result can be derived by choosing δt = ση.

The benefit of our proposed choice δt = σβD2
X/t from the perspective of practical implementation

is that it allows adaptive error of the approximate solution vt to the linear subproblems and larger

error can be admissible when t is small.

As a side note, recalling that ACndG procedure reduces to CndG procedure in Algorithm

2.5, we can observe that Proposition 3.2 in the previous section is a direct consequence of the above

result:

Proof of Proposition 3.2. Noting that the CndG procedure described in Algorithm 2.5 is equivalent

to the ACndG procedure with δt ≡ 0, applying Proposition 3.3 above with αt = 2/(t + 1), we

conclude the proposition immediately from (3.2.20).

From the above two proofs, it is clear that Proposition 3.3 is different from Proposition

3.2 in the previous section, since it shows us that we can compute an approximate solution, rather
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than an exact one, to (3.2.10) and proceed with the convergence analysis. We will eventually utilize

Proposition 3.3 to establish an upper bound on the number of inner iterations that Algorithm 3.1

requires to compute an ε-solution. We now continue on to the outer iteration analysis, starting with

a few results that establish the relation between our computed Lk in the linesearch scheme and

the underlying Hölder exponent ν and constant Mν in (2.1.1). We use the following lemma that

appeared in [7].

Lemma 3.3. For any δ > 0 and any L such that

L ≥
(
1− ν

1 + ν
· 1
τ

) 1−ν
1+ν

M
2

1+ν
ν ,

where ν and Mν are the Hölder continuity exponent and constant in (2.1.1), we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
||y − x||2 + τ

2
, ∀x, y ∈ X. (3.2.22)

Proof. See Lemma 1 of [7].

Note that for ν = 1, the term
(

1−ν
1+ν

) 1−ν
1+ν

can be handled using a continuity argument

limν→1

(
1−ν
1+ν

) 1−ν
1+ν

= 1. We state an immediate corollary of the above lemma below.

Corollary 3.1. Any Lk > 0 chosen by Algorithm 3.1 according to (3.2.1) must also satisfy

Lk ≤ 2

(
1− ν

1 + ν
· 1

εγk

) 1−ν
1+ν

M
2

1+ν
ν

Proof. Suppose that Lk does not satisfy (3.2.22). Then applying Proposition 3.4 with τ = εγk

implies that Lk/2 satisfies (3.2.1), contradicting the fact that Lk was chosen at step k following the

proposed backtracking linesearch implementation (see the remark on practical implementation after

the description of Algorithm 3.1).

The above result is an immediate consequence of the backtracking linesearch strategy we

use to find a suitable Lk that satisfies (3.2.1). Based on the above result, we can estimate a bound

of Lkγ
2
k in the proposition below. Recalling that Γk = Lkγ

2
k/k from (3.2.6) in Algorithm 3.1, the

following lemma provides also a bound of Γk that is important for the outer iteration complexity

analysis.
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Lemma 3.4. Let Lk > 0 be chosen by (3.2.1) of Algorithm 3.1 at step k, then

Lkγ
2
k ≤ CνM

2
1+ν
ν

k
1+3ν
1+ν ε

1−ν
1+ν

where

Cν :=

(
1 + 2ν

1 + 3ν

) 1+3ν
1+ν

(
1− ν

1 + ν

) 1−ν
1+ν

2
4+10ν
1+ν (3.2.23)

is a constant depending only on ν.

Proof. The case when k = 1 is immediate from Corollary 3.1. Therefore, throughout the proof we

assume that k ≥ 2. Since we set Γk = Lkγ
2
k/k in Algorithm 3.1, we can prove this proposition by

bounding Γk. Set s := (1+ ν)/(1+3ν). Since ν ∈ [0, 1], we have s ∈ [1/2, 1]. We study the quantity

1/Γs
k − 1/Γs

k−1, which can be rewritten as

1

Γs
k

− 1

Γs
k−1

=

(
1
Γs
k
− 1

Γs
k−1

)(
1

Γ1−s
k

+ 1
Γ1−s
k−1

)
1

Γ1−s
k

+ 1
Γ1−s
k−1

=

1
Γk

− 1
Γk−1

− 1
Γk

(
Γk

Γk−1

)s
+ 1

Γk−1

(
Γk−1

Γk

)s
1

Γ1−s
k

+ 1
Γ1−s
k−1

.

Here, noting from the relation of Γk and Γk−1 in (3.1.4) that Γk ≤ Γk−1 and recalling that s ∈ [1/2, 1],

we can make two observations. First, we have Γ2s−1
k ≤ Γ2s−1

k−1 , and hence

− 1

Γk

(
Γk

Γk−1

)s

+
1

Γk−1

(
Γk−1

Γk

)s

≥ 0.

Second, we have Γ1−s
k ≤ Γ1−s

k−1, and hence

1

Γ1−s
k

+
1

Γ1−s
k−1

≤ 2

Γ1−s
k

.

Combining the above two observations and recalling that s = (1 + ν)/(1 + 3ν) and the relations

concerning Γk and Γk−1 in (3.1.4), we have that

1

Γs
k

− 1

Γs
k−1

≥
1
Γk

− 1
Γk−1

2
Γ1−s
k

=

γk

Γk

2
Γ1−s
k

=
γk
2
Γ
− 1+ν

1+3ν

k . (3.2.24)
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We can further bound the last expression in the above relation. Indeed, recalling that Γk = Lkγ
2
k/k

and applying Corollary 3.1, we have the inequality

γ2k
kΓk

=
1

Lk
≥ 1

2M
2

1+ν
ν

(
1 + ν

1− ν
· εγk

) 1−ν
1+ν

.

In the above recall that we can use a continuity argument for the ν = 1 case since (1−ν)−(1−ν) → 1

as ν → 1. Rearranging terms in the above relation, we have

γkΓ
− 1+ν

1+3ν

k ≥
(
1 + ν

1− ν

) 1−ν
1+3ν ε

1−ν
1+3ν k

1+ν
1+3ν

2
1+ν
1+3νM

2
1+3ν
ν

.

Applying the above bound to (3.2.24), it follows that

1

Γs
k

− 1

Γs
k−1

≥
(
1 + ν

1− ν

) 1−ν
1+3ν ε

1−ν
1+3ν k

1+ν
1+3ν

2
2+4ν
1+3νM

2
1+3ν
ν

.

Summing the above from i = 2 to k and using the fact that

k∑
i=2

i
1+ν
1+3ν ≥

∫ k

1

u
1+ν
1+3ν du =

1 + 3ν

2 + 4ν
·
(
k

2+4ν
1+3ν − 1

)
≥ 1 + 3ν

4 + 8ν
k

2+4ν
1+3ν , ∀k ≥ 2

and the definition of Cν in (3.2.23), we obtain

1

Γs
k

≥ 1

Γs
k

− 1

Γs
1

≥
(
1 + ν

1− ν

) 1−ν
1+3ν ε

1−ν
1+3ν

2
4+10ν
1+3ν M

2
1+3ν
ν

1 + 3ν

1 + 2ν
k

2+4ν
1+3ν

Recalling that s = (1 + ν)/(1 + 3ν) and Γk = Lkγ
2
k/k, we conclude the proposition immediately

from the above result.

It should be noted that the technique utilized in Lemma 3.4 is similar to that of the proof

surrounding equation (4.4) in [7]. However, note that the choice of parameter γk in UCGS is different

from the one in [7]. Therefore, the proof in [7] needs to be adapted to the above proof. With the

help of Lemma 3.4, we are now ready to prove our primary convergence properties on the proposed

UCGS algorithm. We start with the following proposition that resembles the outer iteration analysis

in Proposition 3.1 of the previous section.

Proposition 3.4. Suppose that the parameters in Algorithm 3.1 satisfy βk ≥ Lkγk for all k. Then
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for any x ∈ X,

f(yk)− ℓk(x) ≤
ε

2
+ Γk

k∑
i=1

γiβi
2Γi

(
||x− xi−1||2 − ||x− xi||2

)2
+ Γk

k∑
i=1

γiηi
Γi

.

Proof. Fix any x ∈ X. From the definitions of ℓk(x) and yk in (3.2.1) and (3.2.5) respectively, we

have

1

Γk
ℓk(x) =

k∑
i=1

1

Γi
(γif(zi) + γi⟨∇f(zi), x− xi⟩+ ⟨∇f(zi), γi(xi − zi)⟩)

=

k∑
i=1

1

Γi
(f(zi) + ⟨∇f(zi), yi − zi⟩) +

γi
Γi

⟨∇f(zi), x− xi⟩

− 1− γi
Γi

(f(zi) + ⟨∇f(zi), yi−1 − zi⟩)

We now bound three terms in the above relation. First, by convexity of f ,

−(f(zi) + ⟨∇f(zi), yi−1 − zi⟩) ≥ −f(yi−1).

Second, by our choice of Lk in (3.2.1) and the definitions of yk and zk in (3.2.5) and (3.2.3) respec-

tively, we have

f(zi) + ⟨∇f(zi), yi − zi⟩ ≥f(yi)−
Li

2
||yi − zi||2 −

ε

2
γi

=f(yi)−
Liγ

2
i

2
||xi − xi−1||2 −

ε

2
γi.

Lastly, using the result (3.2.18) in Lemma 3.2 and noting the definition of ϕ(x) in (3.2.9), we obtain

the following result during the termination of the ACndG procedure in computing xi:

⟨∇f(zi), x− xi⟩ ≥ βi⟨xi − xi−1, xi − x⟩ − ηi

=− βi
2

(
||x− xi−1||2 − ||xi − xi−1||2 − ||x− xi||2

)
− ηi

≥− βi
2

(
||x− xi−1||2 − ||x− xi||2

)
− ηi +

L2
i

2
||xi − xi−1||2 .

In the last inequality above we use our assumption that βk ≥ Lkγk for all k. Based on the above
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three observations and rearranging terms we obtain that

1

Γk
ℓk(x) ≥

k∑
i=1

1

Γi

(
f(yi)− (1− γi)f(yi−1)−

γiβi
2

(||x− xi−1||2 − ||x− xi||2)
)

− 1

Γi

(ε
2
γi + γiηi

)
=
f(yk)

Γk
−

k∑
i=1

γiβi
2Γi

(||x− xi−1||2 − ||x− xi||2)−
k∑

i=1

γiηi
Γi

− ε

2Γk
.

Here in the last equality we use the relations (3.1.4) and (3.2.13) and the fact that γ1 = 1 in its

definition (3.2.2). We conclude the result by multiplying by Γk and rearranging terms.

With the help of Propositions 3.3, Lemma 3.4, and Proposition 3.4, we are ready to present

the complexity results of UCGS in the following theorem.

Theorem 3.4. Suppose that we apply UCGS described in Algorithm 3.1 with parameters

βk = Lkγk, ηk =
LkγkD

2
X

k
, and εk =

σLkγ
2
kD

2
X

2
, (3.2.25)

and αt in (3.2.12) and δt = σβD2
X/t in the ACndG procedure, where σ ≥ 0 is a parameter related to

the accuracy of approximately solving linear objective optimization subproblems. Then Algorithm

3.1 terminates with an ε-solution after at most Niter outer iterations where

Niter :=

16
(
(3 + σ)

1+ν
2 MνD

1+ν
X

ε

) 2
1+3ν


As a consequence, the total number of gradient evaluations and linear objective optimizations

performed by UCGS to find an ε solution of (CO) can be bounded by O((MνD
1+ν
X /ε)

2
1+3ν ) and

O((MνD
1+ν
X /ε)

4
1+3ν ) respectively.

Proof. From the definition of sk in Algorithm 3.1, we have that if the termination criterion of

UCGS in (3.2.8) holds, then yk is an ε-solution to problem (CO). Let us evaluate the number of

gradient evaluations, or equivalently, the number of outer iterations of UCGS in order to compute

an ε-solution yk. Applying Proposition 3.4 with our choice of parameters we have

f(yk)− ℓk(x) =
ε

2
+

Γk

2

k∑
i=1

i(||x− xi−1||2 − ||x− xi||2) + ΓkkD
2
X , ∀x ∈ X. (3.2.26)
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The second term above can be further simplified by noting from the compactness of X and the

definition of the diameter DX in (1.0.1). Indeed, we have

k∑
i=1

i
(
||x− xi−1||2 − ||x− xi||2

)
= ||x− x0||2 +

k∑
i=2

(i− (i− 1)) ||x− xi−1||2 − k ||x− xk||2

≤D2
X +

k∑
i=2

D2
X = kD2

X , ∀x ∈ X.

(3.2.27)

Thus, we may continue by applying (3.2.27) to (3.2.26) with x = sk to conclude that

f(yk)− ℓk(sk) ≤
ε

2
+

Γk

2
kD2

X + ΓkkD
2
X =

ε

2
+

3Lkγ
2
k

2
D2

X .

Here we make use of the description of Γk in (3.2.6) for the last equality. In view of the above result

and the value of parameter εk in (3.2.25), yk satisfies the termination criterion (3.2.8) of UCGS and

hence becomes an ε-solution whenever k satisfies the relation (3+σ)Lkγ
2
kD

2
X ≤ ε. Applying Lemma

3.4, it follows that such relation holds whenever

(3 + σ)CνD
2
XM

2
1+ν
ν

k
1+3ν
1+ν ε

1−ν
1+ν

≤ ε, i.e., k ≥ C
1+ν
1+3ν
ν

(
(3 + σ)

1+ν
2 MνD

1+ν
X

ε

) 2
1+3ν

.

Noting that Cν defined in (3.2.23) is a constant that depends only on ν ∈ [0, 1] and observing that

C
1+ν
1+3ν
ν ≤ 16 for all ν ∈ [0, 1], we conclude that whenever k ≥ Niter, yk is an ε-solution.

To compute the total number of gradient evaluations required, note that each outer iteration

of UCGS requires us to search for a valid Lk before proceeding. From the discussion following

Algorithm 3.1 regarding how to find a valid Lk, let ik denote the number of times that we set

Lk = 2Lk on iteration k before a valid Lk is found. Since the validation of each Lk requires a

gradient evaluation, the total number of gradient evaluations of UCGS is

Ngrad :=

Niter∑
k=1

1 + ik. (3.2.28)
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Noting from our linesearch strategy that Lk = 1
22

ikLk−1, we have that ik − 1 = log Lk

Lk−1
. Thus,

Ngrad =

Niter∑
k=1

1 + ik =

Niter∑
k=1

2 + logLk − logLk−1 ≤ 2Niter + logLNiter
.

It suffices to show that the logarithmic term above is indeed negligible. Using Corollary 3.1, we have

that

logLk ≤ log

[(
1− ν

1 + ν
· 1

εγk

) 1−ν
1+ν

M
2

1+ν
ν

]

≤ 1− ν

1 + ν

(
log

(
1

ε

)
+ log

(
1

γk

))
+

2

1 + ν
logMν

(3.2.29)

since (1− ν)/(1 + ν) ≤ 1 for ν ∈ [0, 1]. To handle the 1/γk term, noting that since the termination

criterion in (3.2.8) is met whenever (3 + σ)Lkγ
2
kD

2
X ≤ ε, we have that

Lkγ
2
k ≤ ε

(3 + σ)D2
X

upon termination. Thus, by running Algorithm 3.1 with the stopping criterion in (3.2.8), we can be

sure that

Lkγ
2
k ≥ ε

(3 + σ)D2
X

.

We can use the above inequality to then derive

log

(
1

γk

)
≤ 1

2
log

(
(3 + σ)D2

X

ε

)
+

1

2
logLk (3.2.30)

Applying (3.2.30) to (3.2.29), we obtain

logLk ≤ 2(1− ν)

1 + 3ν
log

(
1

ε

)
+

1− ν

1 + ν
log

(
(3 + σ)D2

X

ε

)
+

4

1 + 3ν
logMν

which is independent of k. Thus, we have that, up to a negligible logarithmic term, UCGS requires

O((MνD
1+ν
X /ε)

2
1+3ν ) gradient evaluations of f to compute an ε-solution.

It suffices to compute the number of linear objective optimizations that UCGS requires for

computing an ε-solution. Let us estimate the maximal number of inner iterations required before

the termination criterion (3.2.11) is satisfied. Recall from the remark after (3.2.12) that αt is the
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best linesearch parameter and hence satisfies assumption (3.2.19) in Proposition 3.3. Applying

Proposition 3.3 and noting the definition of approximate solution vt in (3.2.10), we have that the

maximal number of linear objective optimizations performed at the k-th call to the ACndG procedure

is at most

Tk := 1 +

⌈
(7σ + 6)βkD

2
X

ηk

⌉
= 1 + ⌈(7σ + 6)k⌉.

Noting that there is a total of 1+ (1+ ik)Tk linear optimizations in the k-th outer iteration, we can

compute the total number of linear optimizations to be

Nlin :=

Niter∑
k=1

1 + (1 + ik)Tk ≤ Niter + TNiter

Niter∑
k−1

(1 + ik)

since Tk is increasing in k. Applying (3.2.28) to the above, we have

Nlin ≤ Niter + TNiter
Ngrad

Since TN = O(N), we conclude that Nlin = O((MνD
1+ν
X /ε)

4
1+3ν ).

We conclude this section with a few remarks on the above complexity results of UCGS.

First, we note that UCGS is similar to the Fast Gradient Method presented in [7] in the sense

that the number of gradient evaluations generalizes the accelearated gradient descent method in [2].

From Theorem 3.4, number of gradient evaluations required by UCGS to compute an approximate

solution is O(
(
MνD

1+ν
X /ε)

2
1+3ν

)
. In the smooth case when ν = 1, this becomes O

(√
M1D2

X/ε
)

which matches the complexities of gradient evaluations in [7, 2]. Second, unlike FGM that requires

exact solutions to projection subproblems, we have a bound on the number of linear objective

optimizations required to solve the projection subproblem (3.2.4). From this perspective, UCGS is

a generalization of CGS in [10] as a universal method that covers not only the smooth case (when

ν = 1) but also the weakly smooth case (when ν ∈ (0, 1)), without requiring any knowledge of Hölder

exponent ν and constant Mν . Indeed, when ν = 1 our complexity on the number of linear objective

optimizations is on the order of O(M1D
2
X/ε), which matches the that of CGS in [10]. Third, the

number of linear objective optimizations and gradient evaluations when CG is applied to (CO) was

shown to be O
((
MνD

1+ν/ε
) 1

ν

)
in [21, 22]. In view of Theorem 3.4, UCGS benefits from sliding and

only requires O
((
MνD

1+ν/ε
) 2

1+3ν

)
gradient evaluations and O

((
MνD

1+ν/ε
) 4

1+3ν

)
linear objective
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optimizations which are both improvements over the results in [21, 22] whenever ν ∈ (0, 1]. Fourth,

our proposed UCGS method is not only a universal method generalization of the CGS method.

Indeed, there are more features added for practical implementation: it has an implementable exit

criterion and allows for an approximate solution to (3.2.10). Note that such added features of the

UCGS does not affect its theoretical complexity. Finally, we use the same accuracy constant σ for

approximately solving the linear subproblems in setting the parameters εk and δt. It is easy to

change the proof if we use different accuracy constants for εk and δt.

3.3 Numerical Experiments

Our goal in this section is to present preliminary results from our numerical experiments.

We compare the performance of our proposed UCGS algorithm with that of the CG method for

Hölder smooth objectives in [21] in two numerical experiments described below. The experiments

are performed using MATLAB R2018b.

In the first experiment, we consider the problem

min
x∈conv(V )

f(x) := ||Ax− b||2

with V = {v1, . . . , vp} ⊆ Rn, conv(V ) := {x ∈ Rn : ∃λ ∈ ∆p s.t. x =
∑p

j=1 λivi}, and ∆p :=

{λ ∈ Rp :
∑p

i=1 λi = 1, λi ≥ 0} is the standard simplex. In this experiment, we generate vectors

vi uniformly in [0, 1]n. The matrix A ∈ Rm×n is a Gaussian randomly generated sparse matrix

with density d. For this experiment, we fix the number of vectors in the set V to be p = 500 and

set m = 2n. The linear objective optimization subproblem is a linear program over the standard

simplex and can be computed easily.

For our second experiment, we solve the problem

min
X∈Spen

f(X) :=

m∑
i=1

||X −Ai||2

where Spen := {X ∈ Rn×n : tr(X) = 1, X ⪰ 0} is the standard spectrahedron and Ai ∈ Spen for

each i = 1, . . . ,m. The matrices Ai are obtained by randomly generating an n × n matrix whose

entries follow uniform [0, 1] distributions and then projecting it into Spen. The linear objective

optimization problem over Spen is equivalent to a smallest eigenvalue problem, which is solved by
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MATLAB’s eigs() function. Note that a solution to the smallest eigenvalue problem will not be

exact, and therefore we benefit from being able to solve the linear subproblems approximately.

In our experiments, UCGS terminates whenever an ε-solution with tolerance ε = 10−3 is

computed. We terminate CG when its computational time exceeds twice the amount that UCGS

spent before termination. Note that both models in the experiments have nonsmooth objective

functions, but are still differentiable at many feasible points. Therefore, they may benefit from a

universal method for ν ∈ (0, 1].

UCGS CG
n d GE LO Time Error Iter Time Error

2500 0.2 66 2690 6.71 9.945e− 4 572 13.42 9.7086e1
2500 0.4 60 3679 9.08 9.976e− 4 524 18.17 1.404e2
2500 0.6 62 245 2.64 9.678e− 4 146 5.29 5.598e2
2500 0.8 57 3176 8.45 9.768e− 4 399 16.93 2.400e2
5000 0.2 71 286 7.13 9.882e− 4 178 14.32 6.037e2
5000 0.4 42 52 4.89 9.585e− 4 84 9.81 1.689e3
5000 0.6 68 4564 36.14 9.727e− 4 483 72.40 3.527e2
5000 0.8 67 419 12.91 9.815e− 4 161 25.94 1.165e3
10000 0.2 85 12269 150.51 9.96e− 4 915 301.21 2.449e2
10000 0.4 69 12614 157.39 9.916e− 4 636 315.27 4.734e2
10000 0.6 70 16063 205.87 9.821e− 4 653 412.14 5.423e2
10000 0.8 69 12707 180.65 9.862e− 4 473 361.73 8.162e2

Table 3.1: Minimizing over a convex hull. Here, we report the gradient evaluations (outer iterations)
and linear objective optimization (inner iterations) for UCGS as well as the error that it terminated
with. For CG, we allow it to run for twice the amount of time that UCGS took. We then report
the number of iterations and whether terminating objective value was better than that of UCGS.

The results from the numerical experiments are documented in Tables 3.1 and 3.2. Column

1 indicates the sizes n1 whereas the second column represents either the density of A or the value of

m for experiments 1 and 2 respectively. Columns 3 and 4 denote the number of outer iterations, i.e.

gradient evaluations (GE), and inner iterations, i.e. linear objective optimization (LO), respectively

that UCGS performed before terminating with the desired tolerance. Columns 5 and 6 present the

time (in seconds) used and error upon termination of UCGS. For CG, we report the total number

of iterations (Iter) performed, the computational time (in seconds) required and the final error in

Columns 7, 8, and 9. Note that if the time of CG is twice that of UCGS, then the error is not

expected to be below our specified tolerance.

Let us make a few comments regarding the results in Tables 3.1 and 3.2. For the convex hull

1Note that the length of the vectors are n and n2 in the first and second experiments respectively.
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UCGS CG
n m GE LO Time Error Iter Time Error
50 50 1354 8493 9.87 9.992e− 4 6908 19.74 6.073e− 3
50 100 1767 11138 13.09 9.994e− 4 7038 26.19 1.172e− 2
50 200 2425 15173 25.39 9.995e− 4 8273 50.79 2.271e− 2
100 50 1836 13056 159.61 9.980e− 4 11648 319.25 3.225e− 3
100 100 2347 16816 216.59 9.990e− 4 13372 433.20 5.634e− 3
100 200 3296 23836 310.16 9.984e− 4 16053 620.36 9.892e− 3
200 50 1722 33673 470.71 9.989e− 4 15966 941.43 3.308e− 3
200 100 2314 46323 730.69 9.994e− 4 17033 1461.42 6.870e− 3
200 200 3154 64511 1086.42 9.992e− 4 19762 2172.85 1.015e− 2

Table 3.2: Minimizing over the standard spectrahedron. Here, we report the gradient evaluations
(outer iterations) and linear objective optimization (inner iterations) for UCGS as well as the error
that it terminated with. For CG, we allow it to run for twice the amount of time that UCGS took.
We then report the number of iterations and whether terminating objective value was better than
that of UCGS.

experiment in Table 3.1, we see that the excessive number of gradient evaluations of CG prevents

it from being competitive. The gradient of our objective function requires a matrix multiplication

of increasingly dense matrices. As these densities tend to 1, the gradient evaluations become more

computationally expensive, and CG cannot report as good of a solution as UCGS with even in twice

the allotted time, because it requires much more gradient evaluations to compute an approximate

solution. We also note the necessity of a projection-free algorithm for this feasible set since the

projection onto the convex hull requires the solving of a quadratic program. For any moderately

sized n, this quadratic program is computationally infeasible to solve. For example, one iteration of

FGM in [7] applied to the problem instance with n = 2500 and d = 0.2 takes at least 20 seconds,

which is three times as long as UCGS took to converge.

The second experiment over the standard spectrahedron removes the previous difficulty of

computing the gradient. In the second experiment, the cost of the gradient evaluation is almost

negligible. However, we still see in Table 3.2 that UCGS outperforms CG. In this case, the su-

perior linear objective optimization complexity of UCGS can be seen by noting that CG performs

one linear objective optimization per iteration. Thus, even with a comparable amount of linear

objective optimizations, CG can still not match the complexity of UCGS. This directly highlights

the differences in the linear objective optimization complexity mentions previously. We also observe

the effectiveness of the implementable stopping criterion which enabled us to terminate when an

ε-solution was achieved.
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Chapter 4

Sliding Alternating Direction

Method of Multipliers

Recall in Chapter 1 that the accelerated ADMM algorithm (A-ADMM) achieves optimal

performance with respect to the oracle in (2.3.5) when applied to the problem in (ACO). However,

from our discussion surrounding NAGD and Corollary 2.2, it is known that only O(
√
L/ε) gradient

evaluations are required for a first-order method. In this sense, A-ADMM computes more than the

optimal number of gradient evaluations. From the oracle complexity analysis point of view, the com-

plexity results of NAGD reveal a drawback in the assumption of the first-order oracle (2.3.5). Since

f(x) and h(Kx) are separate functions in the definition of problem (ACO), it is only reasonable to

consider their oracles separately. Specifically, let Of : Rn → Rn×R such that Of (x) = (f(x),∇f(x))

for any inquiry point x, and an oracle OK : Rn ×Rm → Rm ×Rn such that OK(u, v) = (Ku,K⊤v)

for any inquiry point (u, v). The performance of a first-order algorithm should be evaluated by its

number of inquires to OK and Of respectively.

Let us further explore this idea by considering the separable problem

min
x∈X,z∈Z

f(x) + h(Az − b) (4.0.1)

as a generalization of (2.3.1) and (ACO). Per our discussion of NAGD, if h ≡ 0, then we should

expect at least Ω(
√
L/ε) gradient evaluations to compute an ε-solution to (4.0.1). On the other
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hand if f ≡ 0, then, it was shown in [27] that proximal based methods require at least Ω(||K|| /ε)

operator evaluations. Thus, under the combined oracle in (2.3.5), it is natural that problems of the

form (ACO) require Ω(
√
L/ε + ||K|| /ε) calls to compute an ε solution. An interesting question is

whether or not we can design algorithms that can benefit from separating the calls to Of and OK .

This idea of counting different oracle inquiries separately is the driving issue behind sliding

algorithms as we saw in the CGS method in Chapters 1 and 3. From our previous discussion, applying

A-ADMM to solve problem (ACO) computes an ε-approximate solution with onlyO(
√
L/ε+||K|| /ε)

iterations. However, since a gradient evaluation is required for each iteration, we still need to

compute O(
√
L/ε+ ||K|| /ε) gradient evaluations. Conversely, if we apply NAGD in Algorithm 2.1

to solve problem (ACO), we can already compute an ε-approximate solution with O(
√
L/ε) gradient

evaluations of ∇f , finishing part of our objective in algorithm design. The only drawback is that the

optimization subproblem in the xk step (2.0.4) may be difficult to solve. Naturally, we may choose

to solve the subproblem approximately through certain first-order methods.

4.1 Gradient Sliding

Our proposed method GS-ADMM will attempt to combine variants of the above NAGD

and A-ADMM algorithms. In particular, we will make use of the linearized ADMM (L-ADMM) in

Algorithm 4.1 in order to solve the subproblem (2.0.4) approximately. By controlling the number

of iterations used by L-ADMM in each iteration of NAGD, we will keep the operator evaluations to

a minimum while still maintaining the O(
√
L/ε) gradient evaluation complexity of NAGD. Solving

the related projection problem (2.0.4) is a crucial component of sliding algorithms. To continue, we

now discuss solving the appropriate (2.0.4) and analyze the performance of L-ADMM applied to the

subproblem in (2.0.4) under various parameter settings.

Let us describe the subproblem (2.0.4) in NAGD abstractly as follows:

min
u∈X

ϕ(u) := ⟨g, u⟩+ h(Ku) +
β

2
∥u− x∥2. (4.1.1)

Here, ϕ contains an h(Ku) term rather than a linear approximation since h was assumed to be

nondifferentiable and simple. To solve the above problem, we can reformulate it to an affinely
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constrained problem:

min
(u,w)∈H

Φ(u,w) := ⟨g, u⟩+ h(w) +
β

2
∥u− x∥2, (4.1.2)

where recall that H := { (u,w) ∈ X × Z | Ku− w = 0 }. We may now apply the ADMM in Al-

gorithm 2.6 to solve the above problem. Using (ut, vt, wt) as the iterates, we have the following

iterations:

ut =argmin
u∈X

⟨g, u⟩+ β

2
∥u− x∥2 + ⟨vt−1,Ku⟩+

σ

2
∥Ku− wt−1∥2 (4.1.3)

wt =argmin
w∈Rm

h(w)− ⟨vt−1, w⟩+
σ

2
∥w −Kut∥2

vt =vt−1 − σ(Kut − wt).

Note again that for large dense matrix K, the optimization problem in (4.1.3) may be difficult to

solve. However, as discussed in Chapter 1, we may use L-ADMM variant by replacing the quadratic

function (σ/2)∥Ku − wt−1∥2 with its linear approximation. The L-ADMM algorithm is described

in Algorithm 4.1. Note that the in the description of L-ADMM in Algorithm 4.1 we use variable

parameters θt, τt, and ρt instead of the constant parameter σ above for generality. Furthermore, we

see that (4.1.4) and (4.1.5) are computed via a projection and proximal solve, respectively.

Algorithm 4.1 Linearized ADMM (L-ADMM) for solving problem (4.1.2)

Start: Choose u0 ∈ X, v0 ∈ Rm, and w0 ∈ Z.
for t = 1, . . . , T do

Compute

ut = argmin
u∈X

⟨g, u⟩+ β

2
∥u− x∥2 + ⟨K⊤(vt−1 + θt(Kut−1 − wt−1)), u⟩

+
ηt
2
∥u− ut−1∥2

(4.1.4)

wt = argmin
w∈Z

h(w)− ⟨vt−1, w⟩+
τt
2
∥w −Kut∥2 (4.1.5)

vt = vt−1 + ρt(Kut − wt) (4.1.6)

end for

The convergence analysis of L-ADMM is well studied; for example, the analysis in [17] can

be applied directly. Specifically, we have the following result.
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Proposition 4.1. Suppose that the parameters ηt and θt in Algorithm 4.1 satisfy

ηt ≥ θt∥K∥2. (4.1.7)

For any (u,w) ∈ H and any v ∈ Rm, we have

Φ(ũT , w̃T )− Φ(u,w) ≤ ∆T (u,w),

where

ũT :=
1

T

T∑
t=1

ut and w̃T :=
1

T

T∑
t=1

wt (4.1.8)

are the averages of sequences {ut}Tt=1 and {wt}Tt=1, and

∆T (u,w) :=
1

T

T∑
t=1

[
ηt
2
∥u− ut−1∥2 −

β + ηt
2

∥ut − u∥2 + 1

2ρt

(
∥vt−1∥2 − ∥vt∥2

)
+
θt
2
(∥wt−1 − w∥2 − ∥wt − w∥2)− θt

2
(∥Kut−1 −Ku∥2 − ∥Kut −Ku∥2)

− τt − ρt
2ρ2t

∥vt−1 − vt∥2 +
τt − θt

2
∥Kut −Ku∥2 − τt − θt

2
∥wt − w∥2

]
.

(4.1.9)

Proof. Let us fix any (x,w) ∈ H. From the description of ũt and w̃t in (4.1.8) and the convexity of

Φ in (4.1.2) we have

Φ(ũT , w̃T )− Φ(u,w) ≤ 1

T
[Φ(ut, wt)− Φ(u,w)]. (4.1.10)

Let us estimate a bound of Φ(ut, wt) − Φ(u,w). From the optimality condition of ut in (4.1.4) we

have

⟨g +K⊤vt−1 + θtK
⊤(Kut−1 − wt−1), ut − u⟩

≤β
2

(
∥u− x∥2 − ∥ut − x∥2 − ∥ut − u∥2

)
+
ηt
2

(
∥u− ut−1∥2 − ∥ut − ut−1∥2 − ∥ut − u∥2

)
.
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From the optimality condition of wt in (4.1.5) we also have

⟨−vt−1, wt − w⟩+ h(wt)− h(w)

≤τt
2
(∥w −Kut∥2 − ∥wt −Kut∥2 − ∥wt − w∥2).

Applying the above two relations and the definition of Φ in (4.1.2) we have

Φ(ut, wt)− Φ(u,w)

=⟨g, ut − u⟩+ h(wt)− h(w) +
β

2
∥ut − x∥2 − β

2
∥u− x∥2

≤− ⟨K⊤vt−1 + θtK
⊤(Kut−1 − wt−1), ut − u⟩ − β

2
∥ut − u∥2

+
ηt
2

(
∥u− ut−1∥2 − ∥ut − ut−1∥2 − ∥ut − u∥2

)
+ ⟨vt−1, wt − w⟩+ τt

2
(∥w −Kut∥2 − ∥wt −Kut∥2 − ∥wt − w∥2).

In the above, noting that (u,w) ∈ H (thus Ku = w) and using the description of vt in (4.1.6) we

have

− ⟨K⊤vt−1 + θtK
⊤(Kut−1 − wt−1), ut − u⟩+ ⟨vt−1, wt − w⟩ − τt

2
∥wt −Kut∥2

=− τt
2
∥wt −Kut∥2 + ⟨vt−1, wt −Kut⟩ − θt⟨Kut−1 − wt−1,Kut −Ku⟩

=− τt
2ρ2t

∥vt−1 − vt∥2 +
1

2ρt

(
∥vt−1 − vt∥2 + ∥vt−1∥2 − ∥vt∥2

)
− θt

2
(∥Kut−1 −Ku∥2 − ∥Kut−1 −Kut∥2 − ∥wt−1 − w∥2 + ∥wt−1 −Kut∥2).

(4.1.11)

Summarizing the above two relations, rearranging terms, and noting that Ku = w, we obtain

Φ(ut, wt)− Φ(u,w)

≤ηt
2
∥u− ut−1∥2 −

β + ηt
2

∥ut − u∥2 +
(
−ηt

2
∥ut − ut−1∥2 +

θt
2
∥Kut−1 −Kut∥2

)
+

1

2ρt

(
∥vt−1∥2 − ∥vt∥2

)
+
θt
2
(∥wt−1 − w∥2 − ∥wt − w∥2)

− θt
2
(∥Kut−1 −Ku∥2 − ∥Kut −Ku∥2)

− τt − ρt
2ρ2t

∥vt−1 − vt∥2 +
τt − θt

2
∥Kut −Ku∥2 − τt − θt

2
∥wt − w∥2 − θt

2
∥wt−1 −Kut∥2
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Applying the above result to (4.1.10) and observing from (4.1.7) that

−ηt
2
∥ut − ut−1∥2 +

θt
2
∥Kut−1 −Kut∥2 ≤ −ηt − θt∥K∥2

2
∥ut − ut−1∥2 ≤ 0,

we conclude (4.1.9).

There are many possible parameter choices that apply to the above proposition. In the

following corollary we provide one example of parameter choices.

Corollary 4.1. Suppose that the parameters in Algorithm 4.1 are set to

ηt = θ∥K∥2 + β(t− 1), τt = θt ≡ θ, and ρt ≡ σ (4.1.12)

for some positive constants θ and σ with θ ≥ σ. We have for all (u,w) ∈ H that

∆T (u,w) ≤
θ∥K∥2

2T
(∥u0 − u∥2 − ∥uT − u∥2)− β

2
∥uT − u∥2 + 1

2σT

(
∥v0∥2 − ∥vT ∥2

)
+

θ

2T
(∥w0 − w∥2 − ∥wT − w∥2)− θ

2T
(∥Ku0 −Ku∥2 − ∥KuT −Ku∥2).

Proof. Observing that ηt ≥ θt∥K∥2, hence condition (4.1.7) holds and we can apply Proposition

4.1. Noting that τt ≡ θ ≥ σ ≡ ρt and applying the parameter setting (4.1.12) to the description of

∆T (u,w) in (4.1.9) and simplifying terms, we have

∆T (u,w) ≤
1

T

T∑
t=1

[ (
θ∥K∥2

2
+
β(t− 1)

2

)
∥ut−1 − u∥2 −

(
θ∥K∥2

2
+
βt

2

)
∥ut − u∥2

+
1

2σ

(
∥vt−1∥2 − ∥vt∥2

)
+
θ

2
(∥wt−1 − w∥2 − ∥wt − w∥2)− θ

2
(∥Kut−1 −Ku∥2 − ∥Kut −Ku∥2)

]
=
θ∥K∥2

2T
(∥u0 − u∥2 − ∥uT − u∥2)− β

2
∥uT − u∥2 + 1

2σT

(
∥v0∥2 − ∥vT ∥2

)
+

θ

2T
(∥w0 − w∥2 − ∥wT − w∥2)− θ

2T
(∥Ku0 −Ku∥2 − ∥KuT −Ku∥2).

Now that we have a method of solving (2.0.4), we are ready to propose our sliding algorithm

for solving problem (CO). Applying L-ADMM to solve the associated NAGD subproblem in (4.1.1),
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we obtain the gradient sliding ADMM (GS-ADMM) algorithm, described in Algorithm 4.2.

Algorithm 4.2 Gradient sliding alternating direction method of multipliers (GS-ADMM)

Start: Choose x0 ∈ X and set x0 := x0. Set y0 := 0 and z0 := Kx0.
for k = 1, . . . , N do

Compute

xk =(1− γk)xk−1 + γkxk−1 (4.1.13)

(x̃k, z̃k, xk, yk, zk, ) =ApproxGS(∇f(xk), xk−1, yk−1, zk−1, βk, Tk) (4.1.14)

xk =(1− γk)xk−1 + γkx̃k (4.1.15)

zk =(1− γk)zk−1 + γkz̃k (4.1.16)

end for
Output xN .
procedure (z̃+, x̃+, x+, y+, z+) = ApproxGS(g, x, y, z, β, T )

Apply L-ADMM in Algorithm 4.1 to solve problem (4.1.2) with initial values u0 = x, v0 = y,
and w0 = z. Obtain the iterates uT , vT , and wT of the algorithm and the average w̃T and ũT
(defined in (4.1.8)) after T iterations.

Output z̃+ := w̃T , x̃
+ := ũT , x

+ := uT , y
+ := vT , and z

+ := wT .
end procedure

In GS-ADMM, iterations (4.1.13)–(4.1.15) resembles that of NAGD in Algorithm 2.1, while

the subproblem in the xk step (2.0.4) in NAGD is replaced by a call to the ApproxGS procedure.

Specifically, in the k-th call to the ApproxGS procedure (4.1.14), the procedure performs Tk iterations

of the L-ADMM algorithm described in Algorithm 4.1 to compute an approximate solution to the

problem in the xk step (2.0.4) in NAGD, or equivalently, problem (4.1.2) with g = ∇f(xk) and

x = xk−1. By Proposition 4.1, for properly chosen parameters we have

[
⟨∇f(xk), x̃k⟩+ h(z̃k) +

βk
2
∥x̃k − xk−1∥2

]
−
[
⟨∇f(xk), u⟩+ h(w) +

βk
2
∥u− xk−1∥2

]
≤ ∆Tk

(u,w), ∀(u,w) ∈ H.
(4.1.17)

Note that the results xk−1, yk−1, and zk−1 computed during the (k − 1)-th call of the ApproxGS

procedure are supplied as initial values in the k-th call, allowing a “warm-start” of the L-ADMM

algorithm. The approximated average solution ũTk
computed after Tk iterations of the L-ADMM

algorithm is delivered to x̃k, which is then used to compute the approximate solution output xk.

Using the above result (4.1.17), we can derive the convergence of Algorithm 4.2.

Theorem 4.1. Suppose that the parameters ηt and θt in Algorithm 4.2 satisfy condition (4.1.7)
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and we choose βk and γk such that

βk ≥ Lγk, (4.1.18)

then we have

F (xk, zk)− (1− γk)F (xk−1, zk−1)− γkF (u,w) ≤γk
[
βk
2
∥xk−1 − u∥2 +∆Tk

(u,w)

]
, ∀u,w ∈ H.

(4.1.19)

Here F is defined in problem (ACO) and ∆Tk
(u,w) follows the definition in (4.1.9).

Proof. Let us fix any (u,w) ∈ H. By the Lipschitz condition (2.0.1) and the convexity of f , we have

f(xk)− (1− γk)f(xk−1)− γkf(u)

≤f(xk) + ⟨∇f(xk), xk − xk⟩+
L

2
∥xk − xk∥2

− (1− γk)[f(xk) + ⟨∇f(xk), xk−1 − xk⟩]

− γk[f(xk) + ⟨∇f(xk), u− xk⟩]

=⟨∇f(xk), xk − (1− γk)xk−1 − γku⟩+
L

2
∥xk − xk∥2

=γk

[
⟨∇f(xk), x̃k − u⟩+ Lγk

2
∥x̃k − xk−1∥2

]
.

Here in the last inequality we use the description of xk and xk in (4.1.15) and (4.1.13). Also, by the

convexity of h and the description of zk in (4.1.16) we have

h(zk)− (1− γk)h(zk−1)− γkh(w) ≤ γk(h(z̃k)− h(w)).

Applying the above two relations and (4.1.17),

[F (xk, zk)− F (u,w)]− (1− γk) [F (xk−1, zk−1)− F (u,w)]

≤γk
[
⟨∇f(xk), x̃k − u⟩+ Lγk

2
∥x̃k − xk−1∥2 + h(z̃k)− h(w)

]
.

≤γk
[
−βk − Lγk

2
∥x̃k − xk−1∥2 +

βk
2
∥u− xk−1∥2 +∆Tk

(u,w)

]
.

Applying (4.1.18) to the above we conclude (4.1.19).
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In the following corollary we describe a possible parameter setting of Algorithm 4.2.

Corollary 4.2. Suppose that the parameters βk, γk, and Tk in Algorithm 4.2 are set to

Tk ≡ T, γk =
2

k + 1
and βk =

2L

k
, (4.1.20)

and that the parameters in the k-th call to the ApproxGS procedure in Algorithm 4.2 are set to

ηt =
σN

k
∥K∥2 + β(t− 1), τt = θt ≡

σN

k
, and ρt ≡

σk

N
(4.1.21)

for some positive integer T and real number σ. Then we have for all (u,w) ∈ H that

F (xk, zk)− F (u,w)

≤
[

2L

N(N + 1)
+

σ∥K∥2

T (N + 1)

]
∥x0 − u∥2 + 1

σT (N + 1)

(
∥y0∥2 − ∥yN∥2

)
+

σ

T (N + 1)
∥z0 − w∥2.

(4.1.22)

Proof. Note that the parameters described in (4.1.21) satisfies (4.1.12) (with θ := σN/k and

σ:=σk/N). Using the parameter values in (4.1.20) and (4.1.21), applying Corollary 4.1 and noting

the initial value and output of the k-th call to the ApproxGS procedure, we have for any (u,w) ∈ H

that

∆Tk
(u,w) ≤σN∥K∥2

2Tk
(∥xk−1 − u∥2 − ∥xk − u∥2)− L

k
∥xk − u∥2 + N

2σTk

(
∥yk−1∥2 − ∥yk∥2

)
+
σN

2Tk
(∥zk−1 − w∥2 − ∥zk − w∥2)− σN

2Tk
(∥Kxk−1 −Ku∥2 − ∥Kxk −Ku∥2).

Applying (4.1.20) and the above result to Theorem 4.1, the result (4.1.20) in the theorem becomes

[F (xk, zk)− F (u,w))]− k − 1

k + 1
[F (xk−1, zk−1)− F (u,w))]

≤ 2

k + 1

[
L

k
(∥xk−1 − u∥2 − ∥xk − u∥2)

+
σN∥K∥2

2Tk
(∥xk−1 − u∥2 − ∥xk − u∥2) + N

2σTk

(
∥yk−1∥2 − ∥yk∥2

)
+
σN

2Tk
(∥zk−1 − w∥2 − ∥zk − w∥2)− σN

2Tk
(∥Kxk−1 −Ku∥2 − ∥Kxk −Ku∥2)

]
.
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Multiplying both sides by [k(k + 1)]/[N(N + 1)] and summing from k = 1, . . . , N we have

F (xk, zk)− F (u,w)

≤
[

2L

N(N + 1)
+

σ∥K∥2

T (N + 1)

]
(∥x0 − u∥2 − ∥xN − u∥2) + 1

σT (N + 1)

(
∥y0∥2 − ∥yN∥2

)
+

σ

T (N + 1)
(∥z0 − w∥2 − ∥zN − w∥2)− σ

T (N + 1)
(∥Kx0 −Ku∥2 − ∥KxN −Ku∥2).

In the above, note that

−
[

2L

N(N + 1)
+

σ∥K∥2

T (N + 1)

]
∥xN − u∥2 − σ

T (N + 1)
∥zN − w∥2

− σ

T (N + 1)
(∥Kx0 −Ku∥2 − ∥KxN −Ku∥2)

≤− σ∥K∥2

T (N + 1)
∥xN − u∥2 + σ

T (N + 1)
∥KxN −Ku∥2 ≤ 0,

We conclude (4.1.22).

Let us briefly consider a simple form of GS-ADMM with Tk ≡ T = 1. Since we only run one

iteration of Algorithm 4.1 in each call to the ApproxGS procedure, we can write the computation

of xk, yk, and zk explicitly. Specifically, using the parameters in the above corollary with T = 1, we

have the following steps in the k-th iteration of GS-ADMM:

xk =
k − 1

k + 1
xk−1 +

2

k + 1
xk−1

xk = argminu∈X⟨∇f(xk), u⟩+
〈
K⊤

(
yk−1 +

σN

k
(Kxk−1 − zk−1)

)
, u

〉
+

2L+ σN∥K∥2

2k
∥u− xk−1∥2

zk = argminw∈Z h(w)− ⟨yk−1, w⟩+
σN

2k
∥z −Kxk∥2

yk = yk−1 +
σk

N
(Kxt − zt)

xk =
k − 1

k + 1
xk−1 +

2

k + 1
xk

The above iteration is indeed the same as that in A-ADMM described in Algorithm 2.7 (with

θk = τk = σN/k, σk = σk/N , and ηk = (2L + σN∥K∥2)/k). The parameters we choose are in

fact exactly the same as the ones described in Theorem 2.9 in [17]. Therefore, we conclude that
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GS-ADMM includes A-ADMM as a special case (when Tk ≡ T = 1). Equivalently, A-ADMM can be

interpreted as an algorithm that uses one iteration of L-ADMM to compute an approximate solution

to the possibly sophisticated subproblem in the xk step (2.0.4) of NAGD.

However, although A-ADMM can be interpreted clearly under the GS-ADMM framework

as the case when Tk ≡ T = 1, from the result (4.1.22) in Theorem 4.1, we can observe that T = 1 is

not necessarily the best choice. This is because that the right hand side of result (4.1.22) is either

in order O(1/N2) or O(1/(TN)). If we are allowed to select Tk ≡ T = O(N) instead of Tk ≡ 1 in

GS-ADMM, we can possibly obtain an estimate in (4.1.22) that has significantly better dependence

on N .

Corollary 4.3. Suppose that Y := domh∗ is compact, and that the parameters in Algorithm 4.2

are set as in Corollary 4.2. Then we have

f(xk) + h(Kxk)− F ∗ ≤
[

2L

N(N + 1)
+

2σ∥K∥2

T (N + 1)

]
D2

X +
1

σT (N + 1)
D2

Y , (4.1.23)

where DX and DY are upper estimates of the distance from x0 to the set of optimal solutions to

problem (CO) and the largest norm supy∈Y ∥y∥ among elements in Y , respectively. Specifically, if

we set

σ :=
DY

∥K∥DX
and T :=

⌈
N∥K∥DY

LDX

⌉
(4.1.24)

in the parameter settings in Corollary 4.2, then the number of gradient evaluations of ∇f and

operator evaluators (involving K and K⊤) are bounded by

N∇f :=

√
5LD2

X

ε
and NK :=

5∥K∥DXDY

ε
+

√
5LD2

X

ε

respectively.

Proof. Consider the k-th call to the ApproxGS procedure. Noting that the ApproxGS procedure

performance Tk ≡ T iterations of L-ADMM in Algorithm 4.1 with ρt ≡ σk/N , by the description of
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vt in (4.1.6) we have

vt = vt−1 +
σk

N
(Kut − wt).

Summing from t = 1, . . . , Tk and noting the definition of average sequence ũt and w̃t in (4.1.8) we

have

vTk
= v0 +

σk

N

Tk∑
t=1

(Kut − wt) = v0 +
σkTk
N

(KũTk
− w̃Tk

).

Observing the setting of initial and output values in the description of the ApproxGS procedure in

Algorithm 4.2 and recalling that Tk ≡ T , the above becomes

yk = yk−1 +
σkT

N
(Kx̃k − z̃k).

Applying the above result, the description of xk and zk in (4.1.15) and (4.1.16) respectively, and

noting that the parameter γk = 2/(k(k + 1)), we have the following recursion:

Kxk − zk =
k − 1

k + 1
(Kxk−1 − zk−1) +

2

k + 1
(x̃k − z̃k)

=
k − 1

k + 1
(Kxk−1 − zk−1) +

2N

σk(k + 1)T
(yk − yk−1).

Multiplying by [k(k + 1)]/[N(N + 1)] and summing from k = 1, . . . , N we have

Kxk − zk =
2

σT (N + 1)
(yN − y0).

Therefore, we have the following relation for any v ∈ Y :

⟨v,Kxk − zk⟩ =
2

σT (N + 1)
⟨v, yN − y0⟩

=
1

σT (N + 1)

[
∥yN∥2 − ∥yN − v∥2 − ∥y0∥2 + ∥y0 − v∥2

]
.
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Applying the above relation to the result (4.1.22) of Corollary 4.2, we obtain

F (xk, zk)− F (u,w) + ⟨v,Kxk − zk⟩

≤
[

2L

N(N + 1)
+

σ∥K∥2

T (N + 1)

]
∥x0 − u∥2 + 1

σT (N + 1)

(
∥y0 − v∥2 − ∥yN − v∥2

)
+

σ

T (N + 1)
∥z0 − w∥2, ∀v ∈ Y.

In the above result, applying the initial value y0 = 0 and z0 = Kx0 in Algorithm 4.2, the definition of

DX and DY , choosing u = x∗ and w = z∗ = Kx∗, and noting that ∥Kx0−Kx∗∥ ≤ ∥K∥∥x0−x∗∥ ≤

DX , we have

F (xk, zk)− F ∗ + ⟨v,Kxk − zk⟩

≤
[

2L

N(N + 1)
+

σ∥K∥2

T (N + 1)

]
∥x0 − x∗∥2 + 1

σT (N + 1)
∥v∥2

+
σ

T (N + 1)
∥Kx0 −Kx∗∥2

≤
[

2L

N(N + 1)
+

2σ∥K∥2

T (N + 1)

]
D2

X +
1

σT (N + 1)
D2

Y , ∀v ∈ Y.

Letting v = h′(Kxk) ∈ Y be a subgradient of h at Kxk, we have

h(zk) + ⟨v,Kxk − zk⟩ ≥ h(Kxk),

thus

f(xk) + h(Kxk)− F ∗

≤f(xk) + h(zk) + ⟨v,Kxk − zk⟩ − F ∗

=F (xk, zk)− F ∗ + ⟨v,Kxk − zk⟩

≤
[

2L

N(N + 1)
+

2σ∥K∥2

T (N + 1)

]
D2

X +
1

σT (N + 1)
D2

Y .
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Specifically, setting σ and T to (4.1.24) we have

f(xk) + h(Kxk)− F ∗

≤
[

2L

N(N + 1)
+

2L

N(N + 1)

]
D2

X +
L∥x0 − x∗∥2

N(N + 1)
=

5LD2
X

N(N + 1)
.

Let us evaluate the number of gradient evaluations and K operations needed to compute an ε-

approximate solution to (CO). In order to have f(xk) + h(Kxk)− F ∗ ≤ ε, we need

N ≥ N∇f :=

√
5LD2

X

ε

iterations of GS-ADMM. With N := N∇f iterations of GS-ADMM, we perform N∇f gradient

evaluations of ∇f and the same number of calls to the ApproxGS procedure. In the k-th call to the

ApproxGS procedure we run Tk ≡ T iterations of L-ADMM with T operator evaluations involving

K and K⊤. Therefore, the total number of K and K⊤ operations is bounded by

NK :=

N∇f∑
k=1

Tk =

N∇f∑
k=1

⌈
N∥K∥DY

LDX

⌉
= N∇f

⌈
N∇f

∥K∥DY

LDX

⌉
≤N∇f

(
N∇f

∥K∥DY

LDX
+ 1

)
=
5∥K∥DXDY

ε
+

√
5LD2

X

ε
.

A few remarks are in place for the above result. First, when X and Y are both compact

and we have knowledge of both diameters, then we can simply set DX and DY to be the diameters

of X and Y respectively. Second, from the setting in (4.1.24), only the ratio between DY and

DX is required for achieving the above complexity result, instead of the knowledge of both values.

Finally, from the above result, in order to compute an ε-approximate solution to (ACO), the gradient

evaluations of ∇f and operator evaluations (involving K and K⊤) required by GS-ADMM are

bounded by

O
(√

LD2
X

ε

)
and O

(√
LD2

X

ε + ∥K∥DXDY

ε

)
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respectively. Let us compare the above result with that of A-ADMM. Let set σ as in (4.1.24) but

T := 1, then by (4.1.23) we have

f(xk) + h(Kxk)− F ∗ ≤
[

2L
N(N+1) +

2∥K∥DY

(N+1)DX

]
D2

X + ∥K∥DXDY

N+1 =
2LD2

X

N(N+1) +
3∥K∥DXDY

N+1 .

Since A-ADMM performs one gradient evaluation of f and operator evaluation (involving K and

K⊤) in each iteration, in order to compute an ε-solution to (ACO) both gradient and operator

evaluations are bounded by

O
(√

LD2
X

ε + ∥K∥DXDY

ε

)
. (4.1.25)

Therefore, the GS-ADMM has significantly better performance than that of A-ADMM in terms of

the number of evaluations of∇f required. Looking further, we can see that the quantity µ := ||K||DY

LDX

plays an important role in the differences between GS-ADMM and A-ADMM. Whenever µ ≤ 1/N ,

we see that from (4.1.24) that T = 1 in GS-ADMM. That is, for small enough values of µ, GS-

ADMM reduces to A-ADMM. Put differently, A-ADMM achieves the optimal gradient evaluation

complexity whenever µ ≤ 1/N . Indeed, applying this relation, the evaluations of ∇f in (4.1.25)

reduces to O(
√
LD2

X/ε). In view of this fact, we note that A-ADMM achieves optimal gradient

evaluation complexity for problems with a particular set of problem dependent parameters, namely

µ ≤ 1/N . The novelty of GS-ADMM is that this method achieves the optimal number of gradient

evaluations for any set of L, ||K|| , DX , and DY .

Note, however, that due to the choice of parameters in (4.1.21) and T in (4.1.24), we must

specify in advance the maximum number of iterations N . Such a property is not ideal as it does not

allow us to perform more iterations if our original desired tolerance is not sufficient. In the numerical

experiments later, we will see a problem instance that suffers from this phenomenon. Therefore, it

is often desirable to design modifications whose parameters are not dependent on the max iteration

count N . Before discussing further sliding algorithms, we now turn to addressing this problem for

GS-ADMM and consequently A-ADMM as well.
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4.2 Operator Sliding

Previously, we applied sliding to ADMM type algorithms to reduce the number of overall

gradient evaluations required for an ε-solution. Similarly, we can also use sliding to improve the

number of operator evaluations required. Here, we present a modified ADMM type algorithm which

computes an ε-approximate solution to (ACO) with O(
√
L/ε + ||K|| /ε) gradient evaluations and

O(||K|| /ε) operator evaluations.

Similar to our previous discussion of GS-ADMM, our proposed operator sliding ADMM

(OS-ADMM) algorithm in this section is based on the works of NAGD and ADMM. Here, ADMM

will serve as our foundation algorithm and we will utilize a more aggressive strategy of computing

the xk subproblem. Rather than linearizing the problem, we will instead use NAGD iterations to

compute an approximate solution to the xk subproblem in (2.3.2). In doing so, we will show that an

ε-approximate solution is achieved in only O(||K|| /ε) iterations of ADMM. By properly choosing

the tolerance of the approximate solution of (2.3.2), we will also show that we can keep the gradient

evaluations to the aforementioned O(
√
L/ε+||K|| /ε). To do so, let us consider the NAGD algorithm

for solving problem

min
u∈X

ψ(u) := f(u) + ⟨l, u⟩+ η
2∥u− x∥2. (4.2.1)

Applying a modified NAGD, which we will refer to as NEST, we have the algorithm described in

Algorithm 4.3. For convergence of Algorithm 4.3, we have the following proposition and its corollary.

Algorithm 4.3 NEST for solving (4.2.1)

Start: Choose x0 ∈ X. Set x̃0 := x0
for k = 1, . . . , N do

Compute

xk =(1− λ)x̃0 + λ(1− γk)x̃k−1 + λγkxk−1, (4.2.2)

xk =argmin
u∈X

⟨∇f(xk) + l, u⟩+ η
2∥u− x∥2 + βk

2 ∥u− xk−1∥2, (4.2.3)

x̃k =(1− γk)x̃k−1 + γkxk. (4.2.4)

end for

61



We will again make use the following quantity:

Γk :=


1 k = 1

(1− γk)Γk−1 k > 1.

(4.2.5)

Proposition 4.2. Suppose that γ1 = 1, γk ∈ (0, 1), k = 2, . . . , N , and

βk ≥ Lλγk. (4.2.6)

Then we have

[ψ(xN )− ψ(u)]− (1− λ)[ψ(x0)− ψ(u)]

≤η
2∥xN − x∥2 − η(1−λ)

2 ∥x0 − x∥2 − ηλ
2 ∥x̃N − x∥2 + λΥN (u), ∀u ∈ X,

where

xk :=(1− λ)x̃0 + λx̃k, ∀k = 0, 1, . . . , N, and (4.2.7)

ΥN (u) :=ΓN

∑N
k=1

γk

Γk

[
βk

2 ∥xk−1 − u∥2 − βk+η
2 ∥xk − u∥2

]
. (4.2.8)

Proof. Let us fix an arbitrary u ∈ X and define

v := (1− λ)x̃0 + λu (4.2.9)

We have the following observations regarding our defined v, xk, x̃k and xk in (4.2.9), (4.2.2), (4.2.4),

and (4.2.7) respectively:

xk − xk =λ[x̃k − (1− γk)x̃k−1]− λγkxk−1 = λγk(xk − xk−1),

xk − (1− γk)xk−1 − γkv =(xk − xk−1) + γk(xk−1 − v) = λ(x̃k − x̃k−1) + λγk(x̃k−1 − u)

=λ[x̃k − (1− γk)x̃k−1]− λγku = λγk(xk − u).

Using the above observations and the convexity and Lipschitz continuity of f in (2.0.1), we have

⟨l, xk − (1− γk)xk−1 − γkv⟩ = λγk⟨l, xk − u⟩
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and

f(xk)− (1− γk)f(xk−1)− γkf(v) ≤f(xk) + ⟨∇f(xk), xk − xk⟩+ L
2 ∥xk − xk∥2

− (1− γk)[f(xk) + ⟨∇f(xk), xk−1 − xk⟩]

− γk[f(xk) + ⟨∇f(xk), v − xk⟩]

=λγk

[
⟨∇f(xk), xk − u⟩+ Lλγk

2 ∥xk − xk−1∥2
]
.

Also, from the optimality condition of xk in (4.2.3) we obtain

⟨∇f(xk) + l, xk − u⟩ ≤βk

2 (∥u− xk−1∥2 − ∥xk − xk−1∥2 − ∥xk − u∥2)

+ η
2 (∥u− x∥2 − ∥xk − x∥2 − ∥xk − u∥2)

=βk

2 ∥xk−1 − u∥2 − βk+η
2 ∥xk − u∥2 − βk

2 ∥xk−1 − xk∥2

+ η
2 (∥u− x∥2 − ∥xk − x∥2).

Using the above three relations and noting (4.2.6) we have the recurrence relation

{[f(xk) + ⟨l, xk⟩]− [f(v)− ⟨l, v⟩]} − (1− γk){[f(xk−1)− ⟨l, xk−1⟩]− [f(v)− ⟨l, v⟩]}

=f(xk)− (1− γk)f(xk−1)− γkf(v) + ⟨l, xk − (1− γk)xk−1 − γkv⟩

≤λγk
[
⟨∇f(xk), xk − u⟩+ Lλγk

2 ∥xk − xk−1∥2 + ⟨l, xk − u⟩
]

≤λγk
[
βk

2 ∥xk−1 − u∥2 − βk+η
2 ∥xk − u∥2 + η

2 (∥u− x∥2 − ∥xk − x∥2)− βk−Lλγk

2 ∥xk−1 − xk∥2
]

≤λγk
[
βk

2 ∥xk−1 − u∥2 − βk+η
2 ∥xk − u∥2 + η

2 (∥u− x∥2 − ∥xk − x∥2)
]
.

(4.2.10)

Note from the description of x̃k in (4.2.4) and convexity of ||·||2 that

||x̃k − u||2 = ||(1− γk)(x̃k−1 − u) + γk(xk − u)||2

≤ (1− γk) ||x̃k−1 − u||2 + γk ||xk − u||2 .

Summing from k = 1, . . . , N in the above relation we conclude

||x̃N − u||2 ≤ ΓN

∑N
k=1

γk

Γk
||xk − u||2 = 2

N(N+1)

∑N
k=1 k ||xk − u||2 . (4.2.11)
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Thus, from the definition of Γk in (4.2.5), our assumption on parameters in (4.2.6), the relation in

(4.2.11), and that γ1 = 1, multiplying by ΓN/Γk and summing from k = 1, . . . , N in (4.2.10) we

have that

[f(xN ) + ⟨l, xN ⟩]− [f(v)− ⟨l, v⟩]

≤λΓN

∑N
k=1

γk

Γk

[
βk

2 ∥xk−1 − u∥2 − βk+η
2 ∥xk − u∥2 + η

2 (∥u− x∥2 − ∥xk − x∥2)
]

≤ηλ
2 (∥u− x∥2 − ∥x̃N − x∥2) + λΓN

∑N
k=1

γk

Γk

[
βk

2 ∥xk−1 − u∥2 − βk+η
2 ∥xk − u∥2

]

where in the last inequality we used the relation

ΓN

∑N
k=1

γk

Γk
= 1.

Observing that x0 = x̃0 and that (1− λ)x0 − λu = v, using the above result we conclude

[ψ(xN )− ψ(u)]− (1− λ)[ψ(x0)− ψ(u)]

=[f(xN )− (1− λ)f(x0)− λf(u)] + [⟨l, xN − (1− λ)x0 − λu⟩]

+ η
2∥xN − x∥2 − η(1−λ)

2 ∥x0 − x∥2 − ηλ
2 ∥u− x∥2

≤[f(xN )− f(v)] + [⟨l, xN − v⟩] + η
2∥xN − x∥2

− η(1−λ)
2 ∥x0 − x∥2 − ηλ

2 ∥u− x∥2

≤η
2∥xN − x∥2 − η(1−λ)

2 ∥x0 − x∥2 − ηλ
2 ∥x̃N − x∥2

+ λΓN

∑N
k=1

γk

Γk

[
βk

2 ∥xk−1 − u∥2 − βk+η
2 ∥xk − u∥2

]

which finishes the proof.

An immediate corollary of Proposition 4.2 is a potential parameter setting for simplified

analysis.

Corollary 4.4. If the parameters of Algorithm 4.3 are set to

γk = 2
k+1 , βk = 2Lξ

k where ξ ≥ λ, (4.2.12)
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then for all u ∈ X we have

ΥN (u) = 2Lξ
N(N+1) (∥x0 − u∥2 − ∥xN − u∥2)− η

2∥x̃N − u∥2.

Proof. By (4.2.12) and (4.2.5) we have Γk = 2/(k(k + 1)). Applying the value of Γk and the

parameter settings in (4.2.12) to (4.2.8) we have

ΥN (u) = 2
N(N+1)

∑N
k=1

[
Lξ∥xk−1 − u∥2 −

(
Lξ + η

2

)
∥xk − u∥2

]
= 2Lξ

N(N+1) (∥x0 − u∥2 − ∥xN − u∥2)− 2
N(N+1)

η
2

∑N
k=1 k∥xk − u∥2

in which we immediately conclude the corollary by noting (4.2.11).

Algorithm 4.4 Operator sliding alternating direction method of multipliers (OS-ADMM)

Start: Choose u0 ∈ X. Set u0 := u0, ũ0 := u0, v0 := 0 and w0 := Ku0.
for t = 1, . . . , T do

Compute

lt =K
⊤(vt−1 + θk(Kũt−1 − wt−1)) (4.2.13)

(ũt, ut) =ApproxOS(lt, ut−1, ut−1, ηt, Nt) (4.2.14)

ut =(1− λt)ut−1 + λũt (4.2.15)

wt =argmin
w∈Rm

− ⟨vk−1, w⟩+ h(w) + τk
2 ∥Kũt − w∥2 (4.2.16)

vt =vt−1 + ρk(Kũt − wt) (4.2.17)

end for
Output xN .
procedure (ũ+, u+) = ApproxOS(g, u, u, v, w, β,N)

Apply NEST in Algorithm 4.3 to solve problem (4.2.1) with x = ũt−1 and initial values
x0 = ut−1, x̃0 = ut−1. Obtain the iterates xN , x̃N , and xN of the algorithm.

Output ũ+ := x̃N and u+ := xN .
end procedure

We can now describe our novel contribution of this section, the Operator Sliding ADMM

(OS-ADMM) algorithm shown in Algorithm 4.4. We can make the following observations regarding

OS-ADMM. The iterations (4.2.16) and (4.2.17) resemble that of the ADMM iterations in (2.3.3)

and (2.3.4). Indeed, the updating of the artificial and dual variables of OS-ADMM are the same

as in ADMM. However, the primal variable, denoted xk in Algorithm 2.6 and ũt in Algorithm

4.4, is computed approximately in OS-ADMM since the gradient step for the primal variable, i.e.

a minimization of the form (2.3.2), is not necessarily easy to compute. The call to ApproxOS
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in (4.2.14) is effectively applying NAGD iterations for computing an approximate solution for the

primal variable. That is, OS-ADMM can be viewed as an ADMM procedure which computes its

primal update using NAGD iterations.

Noting the initial and output iterates of the ApproxOS procedure, we can observe that

ūt = x̄Nt
. Moreover, by Proposition 4.2, for properly chosen parameters we have

[f(ut)− f(u) + ⟨lt, ut − u⟩+ ηt

2 ∥ut − ũt−1∥2 − ηt

2 ∥u− ũt−1∥2]

− (1− λt)[f(ut−1)− f(u) + ⟨lt, ut−1 − u⟩+ ηt

2 ∥ut−1 − ũt−1∥2 − ηt

2 ∥u− ũt−1∥2]

≤ηt

2 ∥ut − ũt−1∥2 − ηt(1−λt)
2 ∥ut−1 − ũt−1∥2 − ηtλt

2 ∥ũt − ũt−1∥2 +ΥNt(u), ∀u ∈ X.

Noting the description of ut in (4.2.15) and simplifying the above relation, we have

f(ut)− (1− λt)f(ut−1)− λtf(u) ≤− λt
[
⟨lt, ũt − u⟩ − ηt

2 ∥ũt − ũt−1∥2

+ ηt

2 ∥ũt−1 − u∥2 +ΥNt
(u)

]
, ∀u ∈ X.

(4.2.18)

Using (4.2.18), we can establish the convergence property of Algorithm 4.4.

Theorem 4.2. Suppose that the parameters in Algorithm 4.4 satisfy (4.2.12) and

λ1 = 1, θt = τt ≥ ρt, ηt ≥ θt∥K∥2. (4.2.19)

Then we have

[F (ut, wt)− F (u,w)]− (1− λt)[F (ut−1, wt−1)− F (u,w)]

≤λt
[

ηt

2 ∥ũt−1 − u∥2 +ΥNt(u) +
1

2ρt

(
∥vt−1∥2 − ∥vt∥2

)
+ θt

2 (∥wt−1 − w∥2 − ∥wt − w∥2)

− θt
2 (∥Kũt−1 −Ku∥2 − ∥Kũt −Ku∥2)

]
,

where F is defined in problem (ACO) and ΥNt(u) follows the definition in (4.2.8).

Proof. Let us fix any (u,w) ∈ H. By the definition of H we have Ku = w. From the optimality

condition of (4.2.16) we have

⟨−vt−1, wt − w⟩+ h(wt)− h(w) ≤ τt
2 (∥w −Kũt∥2 − ∥wt −Kũt∥2 − ∥wt − w∥2)

= τt
2 (∥Ku−Kũt∥2 − ∥wt −Kũt∥2 − ∥wt − w∥2).
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Also, by the description of lt in (4.2.13), noting that Ku = w, and using (4.1.11), we have

− ⟨lt, ũt − u⟩+ ⟨vt−1, wt − w⟩ − τt
2 ∥wt −Kũt∥2

=− ⟨K⊤vt−1 + θtK
⊤(Kũt−1 − wt−1), ũt − u⟩+ ⟨vt−1, wt − w⟩ − τt

2 ∥wt −Kũt∥2

=− θt⟨Kũt−1 − wt−1,Kũt −Ku⟩+ ⟨vt−1, wt −Kũt⟩ − τt
2 ∥wt −Kũt∥2

=− θt
2 (∥Kũt−1 −Ku∥2 − ∥Kũt−1 −Kũt∥2 − ∥wt−1 − w∥2 + ∥wt−1 −Kũt∥2)

+ 1
2ρt

(
∥vt−1 − vt∥2 + ∥vt−1∥2 − ∥vt∥2

)
− τt

2ρ2
t
∥vt−1 − vt∥2.

Therefore, combining the two above relations we have

h(wt)− h(w)− ⟨lt, ũt − u⟩ ≤ 1
2ρt

(
∥vt−1∥2 − ∥vt∥2

)
+ θt

2 (∥wt−1 − w∥2 − ∥wt − w∥2)

− θt
2 (∥Kũt−1 −Ku∥2 − ∥Kũt −Ku∥2) + θt

2 ∥K∥2∥ũt − ũt−1∥2,

where the last inequality is from our condition of parameters in (4.2.19). Using the above relation,

(4.2.18), the description of F in problem (ACO), and the convexity of function h, we have

[F (ut, wt)− F (u,w)]− (1− λt)[F (ut−1, wt−1)− F (u,w)]

=[f(ut)− (1− λt)f(ut−1)− λtf(u)] + [h(wt)− (1− λt)h(wt−1)− λth(u)]

≤[f(ut)− (1− λt)f(ut−1)− λtf(u)] + λt[h(wt)− h(u)]

≤λt
[
− ηt

2 ∥ũt − ũt−1∥2 + ηt

2 ∥ũt−1 − u∥2 +ΥNt
(u) + θt

2 ∥K∥2∥ũt − ũt−1∥2

+ 1
2ρt

(
∥vt−1∥2 − ∥vt∥2

)
+ θt

2 (∥wt−1 − w∥2 − ∥wt − w∥2)

− θt
2 (∥Kũt−1 −Ku∥2 − ∥Kũt −Ku∥2)

]
.

We conclude the proposition immediately by noting that ηt ≥ θt∥K∥2 in the condition (4.2.19).

In the following corollary we describe a possible parameter setting of Algorithm 4.4.

Corollary 4.5. Suppose that the parameters in Algorithm 4.4 are set to

Nt ≡ N,λt =
2

t+1 , ηt =
σT
t ∥K∥2, τt = θt =

σT
t , ρt =

σt
T , (4.2.20)
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and that the parameters in the k-th call to the ApproxOS procedure in Algorithm 4.4 are set to

γk = 2
k+1 , βk = 2L

kt (4.2.21)

for some positive integer N and real number σ. Then we have for all (u,w) ∈ H that

F (uT , wT )− F (u,w) ≤ 8L
N(N+1)T (T+1) (∥u0 − u∥2 − ∥uT − u∥2) + 1

σ(T+1) (∥v0∥
2 − ∥vT ∥2).

Proof. Note that the parameters described in (4.2.20) and (4.2.21) satisfy condition (4.2.6) in Propo-

sition 4.2 (with λ = λt = 2/(t+1)). Using the parameter values, applying Corollary 4.4 (with ξ = 2/t

and λ = λt = 2/(t + 1)), and noting the initial value and output of the t-th call to the ApproxOS

procedure, we have

ΥNt
(u) = 4L

Nt(Nt+1)t (∥ut−1 − u∥2 − ∥ut − u∥2)− σT∥K∥2

2t ∥ũt − u∥2.

Applying the parameter settings in (4.2.20) and the above result to Theorem 4.1, we have

[F (ut, wt)− F (u,w)]− t−1
t+1 [F (ut−1, wt−1)− F (u,w)]

≤ 2
t+1

[ σT∥K∥2

2t ∥ũt−1 − u∥2 + 4L
N(N+1)t (∥ut−1 − u∥2 − ∥ut − u∥2)− σT∥K∥2

2t ∥ũt − u∥2

+ T
2σt

(
∥vt−1∥2 − ∥vt∥2

)
+ σT

2t (∥wt−1 − w∥2 − ∥wt − w∥2)

− σT
2t (∥Kũt−1 −Ku∥2 − ∥Kũt −Ku∥2)

]
.

We may then multiply by [t(t+ 1)]/[T (T + 1)] and summing from t = 1, . . . , T to obtain

F (uT , wT )− F (u,w) ≤σ∥K∥2

T+1 (∥ũ0 − u∥2 − ∥ũT − u∥2) + 8L
N(N+1)T (T+1) (∥u0 − u∥2 − ∥uT − u∥2)

+ 1
σ(T+1) (∥v0∥

2 − ∥vT ∥2) + σ
T+1 (∥w0 − w∥2 − ∥wT − w∥2)

− σ
T+1 (∥Kũ0 −Ku∥2 − ∥KũT −Ku∥2).
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We conclude the corollary by noting from the above that

− σ∥K∥2

T+1 ∥ũT − u∥2 − σ
T+1∥wT − w∥2 − σ

T+1 (∥Kũ0 −Ku∥2 − ∥KũT −Ku∥2)

≤ −σ∥K∥2

T+1 ∥ũT − u∥2 + σ
T+1∥KũT −Ku∥2

≤ 0.

Just as in the case for GS-ADMM, the convergence in Theorem 4.2 allows us to choose a

set of parameters that generates an upper complexity bound on minimizing problems of the form in

(ACO).

Corollary 4.6. Suppose that Y := domh∗ is compact, and that the parameters in Algorithm 4.4

are set as in Corollary 4.5. Then we have

f(xk) + h(Kxk)− F ∗ ≤ 8L
N(N+1)T (T+1)D

2
X + 1

σ(T+1)D
2
Y ,

where, recall, DX and DY are upper estimates of the distance from x0 to the set of optimal solutions

to problem (ACO) and the largest norm supy∈Y ∥y∥ among elements in Y , respectively. Specifically,

if we set

σ := DY

∥K∥DX
and N :=

⌈√
LDX

T∥K∥DY

⌉
(4.2.22)

in the parameter settings in Corollary 4.5, then the number of gradient evaluations of ∇f and

operator evaluators (involving K and K⊤) are bounded by

TK := 9∥K∥DXDY

ε and T∇f :=

√
9LD2

X

ε + 9∥K∥DXDY

ε

respectively.

Proof. Similar to the proof of Corollary 4.3 we have

f(xk) + h(Kxk)− F ∗ ≤ 8L
N(N+1)T (T+1)D

2
X + 1

σT (N+1)D
2
Y .
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Noting the choices of σ and N in (4.2.22) we have

f(xk) + h(Kxk)− F ∗ ≤ 8LT∥K∥DY

T (T+1)LDX
D2

X + ∥K∥DXDY

T+1 = 9||K∥DXDY

T+1 .

Let us evaluate the number of gradient evaluations and K operations need to compute an

ε-approximate solution to (ACO). In order to have f(xk) + h(Kxk)− F ∗ ≤ ε, we need T ≥ TK :=

9∥K∥DXDY

ε iterations of the OS-ADMM algorithm in Algorithm 4.4. With T := TK iterations of

OS-ADMM, we perform TK operator evaluations involving K and K⊤ and the same number of calls

to the ApproxOS procedure. In the t-th call to the ApproxOS procedure we run Nt ≡ N iterations

of NEST with N gradient evaluations of ∇f . Therefore, the total number of gradient operations is

bounded by

T∇f :=
∑TK

t=1Nt = TK

⌈√
LDX

TK∥K∥DY

⌉
≤ TK

(√
LDX

TK∥K∥DY
+ 1
)
=

√
9LD2

X

ε + 9∥K∥DXDY

ε .

4.3 Lower Complexity Bounds for ADMM algorithms

Throughout this chapter, we have introduced two sliding techniques that are both designed

to solve problems of the form (ACO). In the discussion surrounding (4.0.1), we argue that to

compute an ε-solution, at least Ω(
√
L/ε) gradient evaluations and Ω(||K|| /ε) operator evaluations

must be computed. Viewed in this way, it is clear from the previous sections that GS-ADMM and

OS-ADMM are optimal algorithms for (ACO) with respect to gradient and operator evaluations

required, respectively. Here, we argue that if properly chosen, either GS-ADMM or OS-ADMM will

have optimal calls to both the gradient and operator oracle for any given problem of the form in

(ACO).

Algorithm 4.5 Sliding Alternating Direction Method of Multipliers (S-ADMM)

if π := ||K||DY√
ε
√
L

≥ 1 then

Apply GS-ADMM.
else

Apply OS-ADMM.
end if
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Theorem 4.3. Let S-ADMM in Algorithm 4.5 be applied to compute an ε-solution to (ACO). Then

S-ADMM requires only O(
√
LD2

X/ε) gradient evaluations of f and O(||K|| /ε) operator evaluations.

Proof. Fix some tolerance ε > 0 and suppose that the quantity π := ||K||DY√
ε
√
L

is known. Whenever

π ≥ 1, S-ADMM applies GS-ADMM to minimize (ACO). Noting the results regarding the gradient

and operator evaluation complexities for GS-ADMM from Corollary 4.3 and that

NK :=

√
5LD2

X

ε + 5||K||DXDY

ε ≤
√

5LD2
X

ε · ||K||DY√
ε
√
L

+ 5||K||DXDY

ε = O
(

||K||DXDY

ε

)

since π ≥ 1, we see that S-ADMM satisfies the conclusion of the theorem whenever π ≥ 1. On

the other hand, if π ≤ 1, then S-ADMM applies OS-ADMM to solve (ACO). From our results in

Corollary 4.6 and the assumption on π, we have

N∇f :=

√
9LD2

X

ε + 9||K||DXDY

ε ≤
√

9LD2
X

ε + 9||K||DXDY

ε ·
√
ε
√
L

||K||DY
= O

(√
LD2

X

ε

)

which satisfies the conclusion of the theorem.

That is, by using π dictate sliding, S-ADMM is an optimal algorithm for solving (ACO)

with respect to both gradient and operator evaluations required.

4.4 Dual Regularized Gradient Sliding

There has been an effort in recent literature to resolve the dependence on the maximum

iteration count N . Specifically for ADMM type algorithms, [28] proposed a technique called dual

regularization which is sufficient for eliminating the need for N in the choosing of inner iteration

parameters. In this section, we will briefly show that dual regularization can be also be successful

when applied to sliding ADMM procedures. We provide a proof of concept by presenting a practical

version of GS-ADMM using dual regularization that does not require N in the parameter setting.

Consider an adaptation of L-ADMM presented in Algorithm 4.6 and let us compare the two

procedures. We can immediately note the differences in the underlying minimization subproblems

(4.1.4) and (4.1.5) in L-ADMM and its counterparts (4.4.1) and (4.4.2). In both pairs, we can

see that an additional norm squared regularizer has been added to each minimization in the dual

regularized algorithm. We can view these as penalties for moving too far away from our initial
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Algorithm 4.6 Dual Regularized Linearized ADMM

Start: Choose u0 ∈ X, v0 ∈ Rm, and w0 ∈ Z.
for t = 1, . . . , T do

Compute

ut = argmin
u∈X

⟨g, u⟩+ β
2 ∥u− u0∥2 + ⟨K⊤(vt−1 + θt(Kut−1 − wt−1))− αt(Kut−1 −Ku0), u⟩

+ ηt

2 ∥u− ut−1∥2 + ξt
2 ||u− u0||2

(4.4.1)

wt = argmin
w∈Z

h(w)− ⟨vt−1, w⟩+ τt
2 ∥w −Kut∥2 + ζt

2 ||w − w0||2 (4.4.2)

vt =
1

1+ρtδt
vt−1 +

ρtδt
1+ρtδt

v0 +
ρt

1+ρtδt
(Kut − wt) (4.4.3)

end for

iterate. We also notice a difference in (4.1.6) and (4.4.3). This too can be explained through a

regularizer. Indeed, note that

argmin
v∈Rm

− ⟨Kut − wt, v⟩+ 1
2ρt

||v − vt−1||2 + δt
2 ||v − v0||2

= 1/ρt

(1/ρt)+δt
vt−1 +

δt
(1/ρt)+δt

v0 +
1

(1/ρt)+δt
(Kut − wt)

= 1
1+ρtδt

vt−1 +
ρtδt

1+ρtδt
v0 +

ρt

1+ρtδt
(Kut − wt)

= vt.

That is, the computation of (4.4.3) can be viewed as solving the above optimization problem which

has a regularization term with penalty δt. Whenever δt ≡ 0, we recover (4.1.6). Thus, the only

difference between Algorithms 4.1 and 4.6 is the presence of regularization terms on the minimization

subproblems. However, despite only being small changes to the subproblem minimizations, these

regularization terms allow us to choose alternative parameters for Algorithm 4.6 that do not require

N . Furthermore, since these subproblem modifications are only the addition of regularization terms,

solving (4.4.1) and (4.4.2) is no more difficult than solving (4.1.4) and (4.1.5) respectively. The

benefit of the regularization terms can be seen in the convergence analysis. For the rest of the

section, we will concern ourselves with the analysis of algorithms that are slight modifications of the

ones already discussed in this section. Accordingly, much of the remaining analysis is similar to our

previous discussion. Below we state a proposition regarding the convergence rate of Algorithm 4.6

that is very similar to that of Proposition 4.1.

Proposition 4.3. Suppose that Algorithm 4.6 is used to minimize (4.1.2). Then for all t ≥ 1 and
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(u,w) ∈ H, we have Φ(ũT , w̃T )− Φ(u,w) ≤ ΛT (u,w) where

ũT := 2
T (T+1)

∑T
t=1 tut and w̃T := 2

T (T+1)

∑T
t=1 twt (4.4.4)

are weighted averages of sequences {ut}Tt=1 and {wt}Tt=1, and

ΛT (u,w) :=
2

T (T+1)

∑T
t=1t

[ (
ηt

2 ||ut−1 − u||2 − ηt+β+ξt
2 ||ut − u||2

)
+ ξt

2 ||u0 − u||2

+
(

1
2ρt

||vt−1||2 −
(

1
2ρt

+ δt
2

)
||vt||2

)
+ δt

2 ||v0||2

+
(

θt
2 ||wt−1 − w||2 − τt+ζt

2 ||wt − w||2
)
+ ζt

2 ||w0 − w||2

+
(

τt
2 ||Kut −Ku||2 − θt−αt

2 ||Kut−1 −Ku||2
)

− 1
2

(
ηt ||ut−1 − ut||2 − (θt − αt) ||Kut−1 −Kut||2

)
− τt−ρt

2 ||wt −Kut||2 − 1
2 (ξt − αt ||K||2) ||u0 − ut||2

− αt

2 ||Ku0 −Ku||2
]
.

(4.4.5)

Specifically, if the parameters in Algorithm 4.1 are set to

τt = θt ≡ σ, ρt ≡ ρ, ζt = αt =
σ
t , ξt =

σ
t ||K||2 , ηt = β

(
t−1
2

)
+ σ ||K||2 , and δt = 1

ρt (4.4.6)

for some positive constants σ and ρ, then have for all (u,w) ∈ H that

ΛT (u,w) ≤ 2
T (T+1)

[(
σ
2 ||K||2 ||u0 − u||2 −

(
βT (T+1)

4 + σ
2 ||K||2 (T + 1)

)
||uT − u||2

)
+
(

1
2ρ ||v0||

2 − T+1
2ρ ||vT ||2

)
+
(

σ
2 ||w0 − w||2 − σ

2 (T + 1) ||wT − w||2
)

+
(

Tσ
2 ||KuT −Ku||2 − Tσ

2 ||Ku0 −Ku||2
)
+ Tσ

2 ||K||2 ||u0 − u||2 + T
2ρ ||v0||

2

+ Tσ
2 ||w0 − w||2

]
.

(4.4.7)

Proof. Fix any (u,w) ∈ H and note that from the definitions of ũt and w̃t in (4.4.4) we have

Φ(ũT , w̃T )− Φ(u,w) ≤ 2
T (T+1)

∑T
t=1 t [Φ(ut, wt)− Φ(u,w)]

by the convexity of Φ. In accordance with the above, we will need to estimate a bound on Φ(ut, wt)−
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Φ(u,w). From the optimality condition of (4.4.1), we have

0 ≥⟨KT (vt−1 + θt(Kut−1 − wt−1)− αt(Kut−1 −Kx)) + ηt(ut − ut−1) + ξt(ut − x), ut − u⟩

+ ⟨g, ut − u⟩+ β⟨ut − x, ut − u⟩

for any u ∈ X. Rearranging, this becomes

⟨g, ut − u⟩+ β⟨ut − x, ut − u⟩ ≤ − ⟨KT (vt−1 + θt(Kut−1 − wt−1)− αt(Kut−1 −Kx)), ut − u⟩

− ηt⟨ut − ut−1, ut − u⟩ − ξt⟨ut − x, ut − u⟩.

Expanding the inner products and rearranging again, we obtain

⟨g, ut − u⟩+β
2

(
||ut − x||2 − ||u− x||2

)
≤− ⟨KT (vt−1 + θt(Kut−1 − wt−1)− αt(Kut−1 −Kx)), ut − u⟩

+ ηt

2

(
||u− ut−1||2 − ||ut − ut−1||2 − ||ut − u||2

)
+ ξt

2

(
||u− x||2 − ||ut − x||2 − ||ut − u||2

)
− β

2 ||ut − u||2 .

(4.4.8)

Similarly, by the optimality condition of (4.4.2), we can show that

h(wt)− h(w) ≤ ⟨vt−1, wt − w⟩+ τt
2

(
||w −Kut||2 − ||wt −Kut||2 − ||w − wt||2

)
+ ζt

2

(
||w − z||2 − ||wt − z||2 − ||w − wt||2

) (4.4.9)

for all w ∈ Z. It follows that

Φ(ut, wt)− Φ(u,w) =⟨g, ut − u⟩+ h(wt)− h(w) + β
2

(
||u− x||2 − ||ut − x||2

)
≤ αt⟨Kut−1 −Kx,Kut −Ku⟩ − θt⟨Kut−1 − wt−1,Kut −Ku⟩

+ ηt

2

(
||u− ut−1||2 − ||ut − ut−1||2 − ||ut − u||2

)
+ ξt

2

(
||u− x||2 − ||ut − x||2 − ||ut − u||2

)
+ τt

2

(
||w −Kut||2 − ||wt −Kut||2 − ||w − wt||2

)
+ ζt

2

(
||w − z||2 − ||wt − z||2 − ||w − wt||2

)
+ ⟨vt−1, wt − w⟩ − ⟨vt−1,Kut −Ku⟩ − β

2 ||ut − u||2

(4.4.10)
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by combining the relations (4.4.8) and (4.4.9). We can further rewrite the first two lines of (4.4.10).

By the fact that (u,w) ∈ H and (4.4.3), we can write

⟨vt−1, wt − w⟩ − ⟨vt−1,Kut −Ku⟩ = ρt

2 ||wt −Kut||2 + 1
2ρt

||vt−1||2 − 1
2ρt

||vt−1 − ρt(wt −Kut)||2

= ρt

2 ||wt −Kut||2 + 1
2ρt

||vt−1||2 − 1
2ρt

||vt + ρtδt(vt − y)||2

≤ ρt

2 ||wt −Kut||2 + 1
2ρt

||vt−1||2 −
(

1
2ρt

+ δt
2

)
||vt||2 + δt

2 y.

Furthermore, we can expand inner products to generate the following bound

αt⟨Kut−1 −Kx,Kut −Ku⟩−θt⟨Kut−1 − wt−1,Kut −Ku⟩

≤αt−θt
2

(
||Kut−1 −Ku||2 − ||Kut−1 −Kut||2

)
+ αt

2 ||K||2 ||x− ut||2 + θt
2 ||wt−1 − w||2 − αt

2 ||Kx−Ku||2 .

We may then apply the above two relations to (4.4.10) and the use the definition of Φ(u,w) in (4.1.2)

to obtain

Φ(ut, wt)− Φ(u,w) =⟨g, ut − u⟩+ h(wt)− h(w) + β
2

(
||u− x||2 − ||ut − x||2

)
≤αt−θt

2

(
||Kut−1 −Ku||2 − ||Kut−1 −Kut||2

)
+ αt

2 ||K||2 ||u0 − ut||2 + θt
2 ||wt−1 − w||2 − αt

2 ||Ku0 −Ku||2

+ ηt

2

(
||u− ut−1||2 − ||ut − ut−1||2 − ||ut − u||2

)
+ ξt

2

(
||u− u0||2 − ||ut − u0||2 − ||ut − u||2

)
+ τt

2

(
||w −Kut||2 − ||wt −Kut||2 − ||w − wt||2

)
+ ζt

2

(
||w − w0||2 − ||wt − w0||2 − ||w − wt||2

)
+ ρt

2 ||wt −Kut||2 + 1
2ρt

||vt−1||2 −
(

1
2ρt

+ δt
2

)
||vt||2 + δt

2 ||v0||2

− β
2 ||ut − u||2 ,

which immediately implies the conclusion in (4.4.5) by combining the similar terms. To show (4.4.7)

and finish the proof, let the parameters of Algorithm 4.6 be chosen according to (4.4.6) and evaluate

the telescoping sums. In particular, note that since ξt ≥ αt ||K||2, θt ≥ αt, τt ≥ ρt, and ηt ≥

(θt − αt) ||K||2 for all t ≥ 1, the relation (4.4.7) follows immediately.
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Let us now compare Proposition 4.3 to Proposition 4.1 and its corollary, Corollary 4.1,

as there are only a few key differences. First, we note that the outputs ũT and w̃T are both

convex combinations of previously computed iterates, but differ slightly in their weights. Second,

by enforcing ξt = δt = ζt = αt ≡ 0, we see that the sum of (4.4.5) is a slightly rearranged and scaled

equivalent of (4.1.9). Lastly, we observe that the parameters in (4.4.6) are not constant with respect

to t. In particular, note how (4.1.9) and (4.4.5) depend on ρt and θt. In order for the sums in (4.1.9)

to telescope nicely, we are required to choose ρt and θt that are constant with respect to the sum.

This restriction is not prevalent in (4.4.5) because the additional regularization parameters ηt, δt, ζt,

and αt can be chosen to better facilitate telescoping.

Similar to the vanilla version of GS-ADMM in Algorithm 4.2, now that we have a method of

solving (4.1.2), we now present Algorithm 4.7: a dual regularized version of GS-ADMMwhich has the

same theoretical properties of Algorithm 4.2, while also having the additional benefit of not requiring

N a priori. To avoid an overly complicated naming system, we refer to both Algorithms 4.2 and 4.7

as GS-ADMM and will specifically list equation numbers when referencing dual regularization.

Algorithm 4.7 Dual Regularized GS-ADMM

Start: Choose x0 ∈ X and set x0 := x0. Set y0 := 0 and z0 := Kx0.
for k = 1, . . . , N do

Compute

xk =(1− γk)xk−1 + γkxk−1

(x̃k, z̃k, xk, yk, zk, ) =ApproxDRGS(∇f(xk), xk−1, yk−1, zk−1, βk, Tk) (4.4.11)

xk =(1− γk)xk−1 + γkx̃k (4.4.12)

zk =(1− γk)zk−1 + γkz̃k (4.4.13)

end for
Output xN .
procedure (x̃+, z̃+, x+, y+, z+) = ApproxDRGS(g, x, y, z, β, T )

Apply Algorithm 4.6 to solve problem (4.1.2) with initial values u0 = x, v0 = y, and w0 = z.
Obtain the iterates uT , vT , and wT of the algorithm and weighted sums w̃T and ũT (defined in
(4.4.4)) after T iterations.

Output z̃+ := w̃T , x̃
+ := ũT , x

+ := uT , y
+ := vT , and z

+ := wT .
end procedure

We can see now that Proposition 4.3 and the call to ApproxDRGS in (4.4.11) implies that
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for properly chosen parameters we have

[
⟨∇f(xk), x̃k⟩+ h(z̃k) +

βk

2 ∥x̃k − xk−1∥2
]
−
[
⟨∇f(xk), u⟩+ h(w) + βk

2 ∥u− xk−1∥2
]
≤ ΛTk

(u,w)

(4.4.14)

for all (u,w) ∈ H which is a similar result to (4.1.17) in the vanilla GS-ADMM case. This allows us

to prove convergence results on Algorithm 4.7. In particular, Proposition 4.3 and its surrounding

discussion shows that we can utilize the regularization parameters to choose more flexible parameters

in Algorithm 4.6. The following theorem shows that we can also make a better choice of Tk, and as

a result, nearly be free of our dependency on N .

Theorem 4.4. Suppose that the parameters in the k-th call to the ApproxDRGS procedure in

Algorithm 4.6 are chosen according to (4.4.6) as

τt = θt ≡ σ, ρt ≡ ρ, ζt = αt =
σ
t , ξt =

σ
t ||K||2 , ηt = β

(
t−1
2

)
+ σ ||K||2 , and δt = 1

ρt

with

σ := χ ⌈µk⌉
µk , ρ := χ µk

⌈µk⌉ (4.4.15)

depending on some constant χ > 0, and that γk, βk, and Tk in Algorithm 4.7 are set as

βk = 2L
k , γk = 2

k+1 , Tk = ⌈µk⌉ (4.4.16)

for some µ > 0. Here, ⌈a⌉ denotes the standard ceiling function which returns the smallest integer

larger than a. Then by the definition of DX in (1.0.1)

F (xN , zN )− F (u,w) ≤
(

2L
N(N+1) +

3χ||K||2
N(N+1)µ

)
D2

X − 2
χN(N+1)µ ||yN ||2 (4.4.17)

for any (u,w) ∈ H and N ≥ 1.

Proof. By the strong convexity and convexity of f and h respectively along with the definition of F
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in (ACO), we have

F (xk, zk)−(1− γk)F (xk−1, zk−1)− γkF (u,w)

≤γk
(
⟨∇f(xk), x̃k − u⟩+ h(z̃k)− h(w) + Lγk

2 ||x̃k − xk−1||2
)

≤γk
(
⟨∇f(xk), x̃k − u⟩+ h(z̃k)− h(w) + βk

2 ||x̃k − xk−1||2
)

+ βkγk

2 ||xk−1 − u||2 − βkγk

2 ||xk−1 − u||2

=γk

[
⟨∇f(xk), x̃k⟩+ h(z̃k) +

βk

2 ||x̃k − xk−1||2

−
(
⟨∇f(xk), u⟩+ h(w) + βk

2 ||xk−1 − u||2
)]

+ βkγk

2 ||xk−1 − u||2

where we used the fact that βk ≥ Lγk for any k ≥ 1. Noting both the inputs and outputs of the

procedure call of ApproxDRGS in (4.4.11) and recalling the discussion surrounding (4.4.14), we may

apply Proposition 4.3 to the above and continue with

F (xk, zk)−(1− γk)F (xk−1, zk−1)− γkF (u,w)

≤ 2
Tk(Tk+1)

[
χ
2
⌈µk⌉
µk ||K||2

(
||xk−1 − u||2 − (Tk + 1) ||xk − u||2

)
− βkTk(Tk+1)

4 ||xk − u||2 + Tkχ
2

⌈µk⌉
µk ||K||2 ||xk−1 − u||2

+ Tk+1
2χ

⌈µk⌉
µk ||yk−1||2 − Tk+1

2χ
⌈µk⌉
µk ||yk||2

+ (Tk+1)χ
2

⌈µk⌉
µk ||zk−1 − w||2 − (Tk+1)χ

2
⌈µk⌉
µk ||zk − w||2

+ Tkχ
2

⌈µk⌉
µk ||Kxk −Ku||2 − Tkχ

2
⌈µk⌉
µk ||Kxk−1 −Ku||2

]
+ βkγk

2 ||xk−1 − u||2

≤βkγk

2

(
||xk−1 − u||2 − ||xk − u||2

)
+ ⌈µk⌉

µk

[(
χγk

Tk
||K||2 ||xk−1 − u||2 − χγk

Tk
||K||2 ||xk − u||2

)
+ γk

χTk

(
||yk−1||2 − ||yk||2

)
+ χγk

Tk

(
||zk−1 − w||2 − ||zk − w||2

)
+ γkχ

Tk+1

(
||Kxk −Ku||2 − ||Kxk−1 −Ku||2

)]
.
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Rearranging and applying the parameters according to (4.4.16), this becomes

F (xk, zk)−(1− γk)F (xk−1, zk−1)− γkF (u,w)

≤
(

βkγk

2 + γkχ⌈µk⌉||K||2
(µk)Tk

)(
||xk−1 − u||2 − ||xk − u||2

)
+ ⌈µk⌉

µk

[
γk

χTk

(
||yk−1||2 − ||yk||2

)
+ γkχ

Tk

(
||zk−1 − w||2 − ||zk − w||2

)
+ γkχ

Tk+1

(
||Kxk −Ku||2 − ||Kxk−1 −Ku||2

)]
≤ 2Lµ+2χ||K||2

k(k+1)µ

(
||xk−1 − u||2 − ||xk − u||2

)
+ 2

χk(k+1)µ

(
||yk−1||2 − ||yk||2

)
+ 2χ

k(k+1)µ

(
||zk−1 − w||2 − ||zk − w||2

)
+ 2χ⌈µk⌉

k(k+1)(⌈µk⌉+1)µ

(
||Kxk −Ku||2 − ||Kxk−1 −Ku||2

)
.

(4.4.18)

Let us now multiply (4.4.18) by k(k+ 1)µ and sum from k = 1, . . . , N . Noting the telescoping sum,

the initializations of y0 = 0 and z0 = Kx0, and the fact that (u,w) ∈ H, this becomes

N(N + 1)µ (FxN , zN )− F (u,w))

≤
(
2Lµ+ 2χ ||K||2

)(
||x0 − u||2 − ||xN − u||2

)
+ 2χ ||Kx0 −Ku||2

+ 2χ
∑N

k=1

(
⌈µk⌉

⌈µk⌉+1

)(
||Kxk −Ku||2 − ||Kxk−1 −Ku||2

)
− 2

χ ||yN ||2

≤
(
2Lµ+ 2χ ||K||2

)(
||x0 − u||2 − ||xN − u||2

)
+ 2χ ||Kx0 −Ku||2

+ 2χ
∑N

k=1

(
1− 1

⌈µk⌉+1

)(
||Kxk −Ku||2 − ||Kxk−1 −Ku||2

)
− 2

χ ||yN ||2

≤
(
2Lµ+ 2χ ||K||2

)(
||x0 − u||2 − ||xN − u||2

)
+ 2χ ||Kx0 −Ku||2

+ 2χ
(
||KxN −Ku||2 − ||Kx0 −Ku||

)
− 2

χ ||yN ||2

+ 2χ
∑N

k=1
1

⌈µk⌉+1

(
||Kxk−1 −Ku||2 − ||Kxk −Ku||2

)

where in the last inequality, we split the sum into two. Using Cauchy-Schwarz, combining like terms,

79



and resolving the final summation, we conclude that

N(N + 1)µ (FxN , zN )− F (u,w))

≤
(
2Lµ+ 2χ ||K||2

)(
||x0 − u||2 − ||xN − u||2

)
− 2

χ ||yN ||2 + 2χ ||Kx0 −Ku||2

+ 2χ
(
||KxN −Ku||2 − ||Kx0 −Ku||

)
+ 2χ

⌈µ⌉+1 ||Kx0 −Ku||2

≤
(
2Lµ+ 2χ ||K||2

)(
||x0 − u||2 − ||xN − u||2

)
− 2

χ ||yN ||2

+ 2χ ||K||2 ||xN − u||2 + χ ||K||2 ||x0 − u||2

≤(2Lµ+ 3χ ||K||2) ||x0 − u||2 − 2Lµ ||xN − u||2 − 2
χ ||yN ||2

≤(2Lµ+ 3χ ||K||2) ||x0 − u||2 − 2
χ ||yN ||2

which reduces to (4.4.17) after dividing by N(N + 1)µ and upper bounding it using the definition

of DX in (1.0.1).

Comparing Theorem 4.4 with Theorem 4.1 and Corollary 4.2, we see that the dual regular-

ized version does not require the usage of N outside of the constants χ and µ which we have not

yet specified. That is, if χ and µ are chosen to be free of N , then so will the entirety of Algorithm

4.7. We answer this question of whether or not these parameters can be chosen in this way as well

as conclude our final GS-ADMM result through Corollary 4.7 below.

Corollary 4.7. Suppose that Y := domh∗ is compact, and that the parameters in Algorithm 4.2

are set as in Theorem 4.4. Then we have

f(xk) + h(Kxk)− F ∗ ≤
(

2L
N(N+1) +

3χ||K||2
N(N+1)µ

)
D2

X +
2D2

Y

χN(N+1)µ , (4.4.19)

where DX and DY are upper estimates of the distance from x0 to the set of optimal solutions to

problem (ACO) and the largest norm supy∈Y ∥y∥ among elements in Y , respectively. Specifically in

the parameter settings in Theorem 4.4, if we set

χ := DY

||K||DX
, and µ := ||K||DY

LDX
(4.4.20)

then the number of gradient evaluations of ∇f and operator evaluations (involving K and K⊤) are
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bounded by N∇f :=

√
7LD2

X

ε and NK := 7∥K∥DXDY

ε +

√
7LD2

X

ε respectively.

Proof. Observe that for any v ∈ Y such that v is a subgradient of h at Kxk, we have

h(Kxk) ≤ h(zk) + ⟨v,Kxk − zk⟩

and consequently

f(xk) + h(Kxk)− F ∗ ≤f(xk) + h(zk) + ⟨v,Kxk − zk⟩ − F ∗

=F (xk, zk)− F ∗ + ⟨v,Kxk − zk⟩.
(4.4.21)

Thus, in view of Theorem 4.4, to obtain a result of the form in (4.4.19), it suffices to bound ⟨v,Kxk−

zk⟩. Note first that by the definition of (4.4.3), the setting of ρt and δt in (4.4.6), and the definitions

of ũt and w̃t in (4.4.4) that

KũT − w̃T = 2
T (T+1)

∑T
t=1 t(Kut − wt)

= 2
ρT (T+1)

∑T
t=1 [((t+ 1)vt − tvt−1)− v0]

= 2
ρT (T+1) [(T + 1)vT − v0 − Tv0] .

Now consider the k-th call to ApproxDRGS in (4.4.11). By the outputs of ApproxDRGS, the above

equality, and the setting of Tk = k in (4.4.16), it follows that

Kx̃k − z̃k = 2
ρ⌈µk⌉(⌈µk⌉+1) [(⌈µk⌉+ 1)yk − yk−1 − ⌈µk⌉yk−1]

= 2
ρ⌈µk⌉ (yk − yk−1)

where recall that v0 is initialized to yk−1. Using this equality, we can show that

Kxk − zk = K((1− γk)xk−1 + γkx̃k)− ((1− γk)zk−1 + γkz̃k)

= k−1
k+1 (Kxk−1 − zk−1) +

2
k+1 (Kx̃k − z̃k)

= k−1
k+1 (Kxk−1 − zk−1) +

4
ρ(k+1)⌈µk⌉ (yk − yk−1)

= k−1
k+1 (Kxk−1 − zk−1) +

4
χN(N+1)µ (yk − yk−1)

where we used the definitions of xk and zk in (4.4.12) and (4.4.13) respectively, the setting of γk =
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2/(k + 1) in (4.4.16) to obtain the first equality, and the definition of ρ in (4.4.15). Multiplying the

above, summing over k = 1, . . . , N , and rearranging, we have that KxN−zN = 4
χN(N+1)µ (yN − y0) ,

which directly implies that

⟨v,KxN − zN ⟩ = 4
χN(N+1)µ ⟨v, yN − y0⟩

= 2
χN(N+1)µ

(
||yN ||2 − ||yN − v||2 − ||y0||2 + ||y0 − v||2

)
≤ 2

χN(N+1)µ

(
||yN ||2 + ||v||2

) (4.4.22)

since we initialize y0 = 0. We may then combine (4.4.22), (4.4.21), and Theorem 4.4 to show that

f(xN ) + h(KxN )− F ∗ ≤ F (xN , zN )− F ∗ + ⟨v,Kxk − zk⟩ ≤
(

2Lµ+3χ||K||2
N(N+1)µ

)
D2

X +
2D2

Y

χN(N+1)µ

which proves (4.4.19). Applying our choice of χ and µ from (4.4.20), we conclude that

f(xN ) + h(KxN )− F ∗ ≤ 7LD2
X

N2 .

Consequently, in order obtain an ε solution, we need N ≥ N∇f
:=

√
7LD2

X

ε iterations of Algorithm

4.7. Since each iteration performs exactly one gradient evaluation, we therefore need at least N∇f

gradient evaluations for an ε solution.

To count the number of operator evaluations, we note that each iteration of Algorithm 4.7

performs one call to Algorithm 4.6 with Tk inner iterations. Since each inner iteration of Algorithm

4.6 requires one operator evaluation, we conclude that the total number of operator evaluations

required for an ε solution using Algorithm 4.7 is bounded above by

NK :=
∑N∇f

k=1 Tk ≤ µ
∑N∇f

k=1 k +N∇f ≤ µN2
∇f +N∇f = 7||K||DXDY

ε +

√
7LD2

X

ε .

We conclude this section by noting that Corollary 4.7 provides the same theoretical conver-

gence rate as its vanilla GS-ADMM counterpart in Corollary 4.3, and is also able to eliminate the

knowledge of N in the parameter setting using additional regularization terms and novel parameter

choices.
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4.5 Numerical Experiments

Our goal now is to present preliminary results from our numerical experiments. We will

be comparing the performance of our sliding algorithms with two algorithms, Nesterov Smoothing

(NEST-S) and A-ADMM. A-ADMM we discussed previously and NEST-S is a NAGD variant that is

able to solve (ACO) with the same iteration complexities as A-ADMM (see [29] for more details). Let

us briefly consider an example that highlights the limitations of the single oracle approach. Consider

the following instance of convex problem (2.3.1) with f(x) := ⟨Qx, x⟩/2−⟨q, x⟩ and h(z) := ∥z− b∥:

F ∗ := min
x∈Rn

1
2 ⟨Qx, x⟩ − ⟨q, x⟩+ ∥Kx− b∥. (4.5.1)

Here n := 2k,

Q := L
4U

⊤SU, q := L
2U

⊤e2k, K := RM
2 V ⊤BU, b := RM

2 V ⊤e, R := 2
√
2k+3L
M

S :=



1 −1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 1


, B :=



−1 1

. .
.

. .
.

−1 1

−1 1

1


, (4.5.2)

e is a 2k-dimensional vector of 1’s, and U and V are orthogonal matrices such that V KU⊤ is the

singular value decomposition of B. Observe that ∥B∥ ≤ 2 since for any x ∈ R2k we have

∥Bx∥2 =
(
x(2k) − x(2k−1)

)2
+ · · ·+

(
x(2) − x(1)

)2
+
(
x(1)

)2
≤2

((
x(2k)

)2
+
(
x(2k−1)

)2)
+ · · ·+ 2

((
x(2)

)2
+
(
x(1)

)2)
+
(
x(1)

)2
≤ 4∥x∥2.

Also, note that B is a nonsingular symmetric matrix with positive and negative eigenvalues, so the

columns of V and U are both eigenvectors of B, and may only differ by their signs. K is a diagonal

matrix by the singular value decomposition construction, with

∥K∥ = RM
2 ∥B∥ ≤ RM = 2

√
2k + 3L.
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Figure 4.1: A comparison of GS-ADMM and existing algorithms.

The problem (4.5.1) is a modified version of the worst-case instance described in Theorem 4.1 of [18].

The difference is that in the problem instance there S is set to BB and U and V are identity matrix.

In our setting of S and B in (4.5.2), S and BB differ only by the top-left entry (the value is 1 for S

and 2 for BB). It is also worth pointing out that the matrix S is also closely related to a block in

the matrix Ak in Chapter 2.1.2 of [2] for worst-case smooth convex optimization instance. However,

unlike the matrix in [2] the top-left and bottom-right entries of S are 1 instead of 2. Accordingly,

since the problem instance (4.5.1) is so similar to the work in [18] which provided an example of

a worst-case problem instance, we might expect A-ADMM and NEST-S to have near worst-case

behavior.

Furthermore, since Q is dense and K is sparse, the gradient evaluations of f will dominate

the running time of these implementations. Thus, if the required gradient evaluations for solving

(4.5.1) are high, a gradient sliding modification would be an effective improvement. Indeed, as

evidenced in Figure 4.1, we see that the GS-ADMM algorithm outperforms A-ADMM and NEST-

S for the problem instance in (4.5.1). The same experiment can be designed to showcase a need

for operator sliding as well. Similarly, through a change of variable, one can modify the problem

formulation described in (4.5.1) to obtain a worst-case instance of the same form, but with a sparse

Q and a dense K. Applying OS-ADMM to the problem will then require fewer operator evaluations,
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Figure 4.2: A comparison of OS-ADMM and existing algorithms.

and thus requires less computational time. Figure 4.2 demonstrates this behavior.

However, although such datasets exist in theory, we may be unlikely to encounter such a

problem in practice. With this in mind, our primary focus will be on another problem. For our

main experiment, we consider a more realistic comparison of S-ADMM, A-ADMM, and NEST-S on

the following image reconstruction problem:

min
x∈X

1
2 ||Ax− f ||2 + λ ||Dx||2,1 , (4.5.3)

where x is a two dimensional image matrix reshaped into an n vector that is to be reconstructed,

λ ||Dx||2,1 is the discrete total variation seminorm regularization term with smoothing parameter

λ, A is the acquisition matrix, f is the observed data, and X is a ball centered at the origin (see

[30]). For this particular experiment, we let f be some fixed image with some standard normally

distributed random noise added component wisely. Our acquisition matrix A is an m by n = 2m

matrix with normally distributed entries. The image reconstruction problem in (4.5.3) is particularlly

well suited for the advantages of S-ADMM. First, this problem fits nicely into our proposed model in

(2.3.1) since the projection onto X is trivial and the proximal problem of the discrete total variation

seminorm is equivalent to projecting a vector onto the total variation ball. Second, the task of image
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reconstruction benefits greatly from our dual-regularized variants that do not require N . Since it

is often hard to associate a tolerance ε with the desired characteristics of a solution, it is often

necessary to solve (4.5.3) to varying degrees of tolerance - a task which is not possible without the

dual regularization variants or restarts.

Before we discuss the results, let us first note the impact of parameters n and λ and how they

affect the model and theory. The parameter λ is the smoothness parameter in the total variation

model. It balances the sharpness of the optimal solution with how closely each individual pixel

of solution matches the original image. This parameter is a hyperparameter in the sense that the

optimal value of λ for modeling purposes depends on the image. Theoretically, our λ is going to

control ratio ||K|| /L. That is, for the model in (4.5.3), L = ||A||2 , and ||K|| = λ ||D|| . Whenever

||K|| is small enough, the difference between gradient complexities of O(
√
L/ε) from S-ADMM and

O(
√
L/ε + ||K|| /ε) from NEST-S and A-ADMM will be negligible. If ||K|| is sufficiently large,

however, S-ADMM will require significantly fewer of the expensive gradient evaluations. Thus, we

should expect A-ADMM and NEST-S to perform better comparatively to S-ADMM whenever λ is

small. On the other hand, the parameter n represents resolution of our initial image, i.e. the number

of total entries in its gray-scale matrix representation. As n grows large, the amount of time needed

to perform a single gradient evaluation grows quadratically in n. Thus, for large n, we expect to see

even a small difference in gradient evaluation complexities result in a large difference of outputs.

With these trends in mind, we applied S-ADMM, A-ADMM, and NEST-S to two different

images with varying resolutions and smoothness parameters. The experiments were conducted in

the following way: S-ADMM was allowed to run for a fixed number of (outer) iterations and then

both A-ADMM and NEST-S were run for the same amount of computational time spent on the

S-ADMM iterations. The results are displayed in Tables 4.1 and 4.2. The columns can be described

as follows: columns 1 and 2 are the aforementioned variable parameters, columns 3-7 depict the

number of gradient evaluations, operator evaluations, final objective value, and relative error of the

solution of S-ADMM, columns 8-10 showcase the total number of iterations, i.e. both the number

of gradient and operator evaluations, the final objective value, and the relative error of the solution

of A-ADMM, and columns 11-13 represent the same for NEST-S. Both tables have similar trends in

results so we will discuss them simultaneously.

First, we notice that in all experiments, S-ADMM performs significantly less gradient evalu-

ations and has more time to spend on operator evaluations. We will, however, focus our comparison
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between S-ADMM and A-ADMM since NEST-S appears to perform unnaturally poorly for this

problem. Second, as predicted, the objective values of S-ADMM are better than that of A-ADMM

and NEST-S when log λ ∈ {0,−1}, but get worse when λ grows smaller. However, as n grows larger

in each experiment, this difference becomes more in favor of S-ADMM. This agrees with our previous

discussion that suggests the differences in gradient evaluation complexity is displayed more clearly

whenever n is large. Third, we note that the best relative error in Table 4.1 occurres when λ = 10−1.

That is, S-ADMM outperforms the other methods for optimally chosen λ. A similar argument can

be made for the Lenna image whose numerical experiments are presented in Table 4.2. We conclude

then that S-ADMM is a preferred method for image reconstructions problems, particularly when n

is large.
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Chapter 5

Conclusions and Discussion

The landscape of first-order convex optimization has quickly evolved as applications become

increasingly large scale. From the optimization perspective, there are two natural avenues of im-

provement. For certain applications, there exists the possibility of a new, accelerated algorithm that

is able to compute an approximate solution with less expensive operations than existing literature.

On the other hand, we can expand the domain of some popular methods to achieve improved area

of applicability. In this thesis, we discussed improvements in both directions.

We began in Chapter 3 by studying the popular CGS algorithm. Preferred due to its

simplicity of implementation, the CGS algorithm is able to compute approximate solutions to smooth

convex problems without the need for a projection oracle. Instead, it performs linear optimizations

in its iterations. As discussed there, the CGS algorithm is an optimal algorithm for this problem class

with respect to the number of linear optimizations and gradient evaluations computed. However,

continual advancements can be made by relaxing some of the assumptions required by CGS. In

Chapter 3, we proposed a new universal method, namely UCGS, that is able to achieve generalized

CGS behavior on a wider class of functions. UCGS extends the applications of CGS to not only

Lipschitz smooth, but also Hölder smooth problems while also removing the necessary knowledge

of smoothness parameters. UCGS also maintains the optimal number of gradient evaluations for its

expanded class of problems and improves upon the current number of linear optimizations required.

We then turned our attention to solving a more structured class, affinely constrained opti-

mization problems. Current literature would suggest that there exists optimal algorithms NEST-S

and A-ADMM for computing approximate solutions with respect to certain oracles. However, by
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relaxing our class of algorithms, in Chapter 4 we proposed two new sliding algorithms that were

preferable to the aforementioned methods both in practice and in theory. In theory, each algorithm

reduces the number of calls to a particular operator required for an approximate solution. Such

improvement was made possible by analyzing these methods under a new oracle approach. In prac-

tice, we showed in the numerical experiments that there exists problem sets such that the reduction

in gradient/operator evaluations was enough for these sliding methods to be computationally faster

than existing methods. Furthermore, we provided a more practical implementation of the gradient

sliding algorithm using dual regularization. This variant relieves us of the N restriction in the pa-

rameter setting and was shown in the numerical experiments to increase functionality. Finally, we

combined the two methods into a single sliding algorithm, S-ADMM, which was able to simultane-

ously achieve optimal gradient and operator evaluation complexity. Such an algorithm would not

be possible under the current approach, but by using a two oracle analysis, we were able improve

upon the existing methods.

There are still many open questions. In the UCGS algorithm, we were able to achieve the

optimal gradient evaluation complexity for the class of Hölder smooth objectives while also improving

the linear optimization complexity. In the smooth case, we know that this linear optimization

complexity is optimal. However, for the Hölder smooth setting, the lower complexity bound is

currently unknown. It is even shown in [31] that there exists methods that require even fewer linear

optimizations in the nonsmooth case.

For the S-ADMM setting, although we have removed the N using dual regularization, the

parameter settings still require the diameter of our feasible space for implementation. This is fre-

quently the case for sliding algorithms including our own UCGS. How to remove such parameters

is an open question for sliding algorithms. Furthermore, we have shown that dual regularization is

sufficient to remove N from our GS-ADMM algorithm, but to design a similarly practical variant

of S-ADMM, we must also propose a dual regularized OS-ADMM algorithm. We believe a similar

method can be derived by the same technique, but such task has not been studied to our knowledge.
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