
Computational Subproblems Trevor Squires

This document is a compilation of computational subproblems and their analytical solutions
that I have encountered as a result of implementing different first-order algorithms. Some may
be more detailed than others depending on how obvious the solution was to me at first.

1 Projections

In many first-order methods, a projection problem is often required to be solved per iteration
in order to solve a more general optimization problem. While there exists projection free
methods, sometimes the projection onto a specific set S can be done analytically and is not a
computational burden. We will look at a few such instances. We seek to solve problems of the
form

argmin
x∈S

||x− u||2

for some convex set S ⊂ Rn and vector u ∈ Rn.

1.1 Standard Spectrahedron

Let m2 = n and notice that a projection onto the standard spectrahedron

Spem := {X ∈ Rm×m | X � 0, tr(X) = 1}

takes the form
argmin
X∈Spen

||X − U ||2F

for some matrix U ∈ Rm×m. Since X � 0, it has eigendecomposition X = V TΛV for some
orthogonal matrix V and diagonal matrix Λ. If we denote λ to be the vector satisfying diag(λ) =
Λ, then by multiplying on the right and left by V T and V respectively, we can consider the
equivalent problem without loss of generality

argmin
Λ=diag(λ),tr(Λ)=1,Λ≥0

||Λ− U ||2F = argmin
λT e=1,λ≥0

||λ||22 − 2〈λ,diag(U)〉 = argmin
λT e=1,λ≥1

||λ− diag(U)||22

after rewriting the objective function using the Frobenius product. Here, e ∈ Rm is a vector of
all 1’s and ∆m := {λ ∈ Rm | λT e = 1, λ ≥ 0} is usually denoted the standard simplex. That
is, projecting onto the standard spectrahedron requires projecting the diagonal of U onto the
standard simplex.

2 Solving Proximal Problems of ”Easy” Functions

There are many algorithms that assume the knowledge of an analytical solution to a proximal
problem,

proxh(τ, u) := min
w∈Rn

h(w) +
τ

2
||w − u||2

for some constant τ ∈ R and vector u ∈ Rn. Here, we will solve this problem for different
choices of h(w).
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2.1 2-Norm

Let h(w) = ||w − b||2. We know that

h(w) = sup
‖ξ‖≤1

〈w − b, ξ〉,

so the optimization problem becomes

argmin
w∈Rn

argmax
||ξ||≤1

〈w − b, ξ〉+
τ

2
||w − u||2 = argmax

||ξ||≤1
argmin
w∈Rn

〈w − b, ξ〉+
τ

2
||w − u||2 .

by the minimax theorem. An optimal solution to the min problem is w∗ := w∗(ξ) such that

ξ + τ(w∗ − u) = 0, i.e., w∗ = u− ξ

τ
.

Continuing with the optimization problem, we have

argmax
||ξ||≤1

argmin
w∈Rn

〈w − b, ξ〉+
τ

2
||w − u||2 = argmax

||ξ||≤1
〈u− b, ξ〉 − 1

τ
||ξ||2 +

1

2τ
||ξ||2

= argmax
||ξ||≤1

〈u− b, ξ〉 − 1

2τ
||ξ||2

= argmax
||ξ||≤1

2τ〈u− b, ξ〉 − ||ξ||2

= argmin
||ξ||≤1

||ξ||2 − 2〈τ(u− b), ξ〉

= argmin
||ξ||≤1

||ξ − τ(u− b)||2

which is to say, project τ(u− b) to the unit ball to obtain ξ, then set w∗ = u− ξ
τ .

2.2 Maximum Eigenvalue

Let n = m2 and let h(w) denote the maximum eigenvalue of the matrix reshape(w) := W .
Rewriting proxh(τ, u) in its matrix equivalent representation, we have

min
w∈Rm2

h(w) +
τ

2
||w − u||2 = min

w∈Rm×m
Λ(W ) +

τ

2
||W − U ||2F

where Λ(W ) denotes the largest eigenvalue of W , X is the matrix corresponding to the reshaped
vector u ∈ Rm2

, and ||·||F is the Frobenius norm. Since

Λ(W ) = max
A�0,tr(A)=1

〈W,A〉,

we have

argmin
W∈Rm×m

Λ(W ) +
τ

2
||W − U ||2F = argmin

W∈Rm×m

argmax
A�0,tr(A)=1

〈W,A〉+
τ

2
||W − U ||2F

= argmax
A�0,tr(A)=1

argmin
W∈Rm×m

〈W,A〉+
τ

2
||W − U ||2F .
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Continuing as before, the inner minimization problem has solution W ∗ satisfying A+ τ(W ∗ −
U) = 0. Thus, it suffices to solve

argmax
A�0,tr(A)=1

〈U − A

τ
,A〉+

τ

2

∣∣∣∣∣∣∣∣U − A

τ
− U

∣∣∣∣∣∣∣∣2
F

= argmax
A�0,tr(A)=1

〈U,A〉 − 1

2τ
||A||2F

= argmin
A�0,tr(A)=1

||A||2F − 2〈Uτ,A〉

= argmin
A�0,tr(A)=1

||A− Uτ ||2F .

Our solution w to the original problem is then obtained by projecting τU to the standard
spectrahedron to get A, setting W ∗ = U − A

τ and then vectorizing W ∗ to get w∗.

3 Optimizing a Linear Objective

In projection free algorithms, it is often the case that we require a solution to a linear objective
optimization problem over our feasible set. That is, we seek a solution to

x∗ ∈ Argmin
x∈S

〈c, x〉

for some convex set S and cost vector c. We will discuss how to do this for various feasible sets.

3.1 Standard Spectrahedron

Reshaping the linear objective for matrix problems, linear objective over the standard spectra-
hedron is as follows: for any nondefective matrix C ∈ Rn×n find X∗ such that

X∗ ∈ Argmin
X�0,tr(X)=1

C •X

where • represents the Frobenius inner product. Without loss of generality, we may assume
that C is symmetric. Recall that

min
X�0,tr(X)=1

C •X = λ(C)

where λ(C) is the minimum eigenvalue of C. Thus, it suffices to find an X ∈ Spen := {X :
X � 0, tr(X) = 1} such that C •X = tr(CX) = λ(C). Let C have eigendecomposition U−1ΛU ,
and k be an index such that Λkk = λ(C). Then choosing X∗ = U−1IkU where Ik = diag(ek)
implies that

C •X∗ = tr(U−1ΛUU−1IkU) = tr(U−1ΛIkU) = λ(C)

since U−1ΛIkU has eigenvalues 0 with multiplicity n − 1 and λ(C) with multiplicity 1. Also
note that since C is symmetric, it admits an orthogonal eigendecomposition, i.e. U−1 = UT .
Thus,

X∗ = U−1IkU = UT IkU = uku
T
k .

Consequently, our linear optimization only requires us to find the eigenvector corresponding to
the eigenvalue of smallest magnitude.
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3.2 Birkhoff Polytopes

We want to efficiently compute a solution to

min
X∈Bn

C •X

where C is an n × n matrix, and the Birkhoff polytope, denoted Bn, is the set of doubly
stochastic matrices, i.e.

Bn := {P ∈ Rn×n | P T e = e, Pe = e, P ≥ 0}.

Here, e denotes the n-dimensional vector of 1’s and P ≥ 0 implies that each entry of P is
nonnegative. By the Birkhoff-von Neumann theorem, we know that Bn = conv(S) where S
is the set of projection matrices. Since we are minimizing a linear objective over a convex
hull, we know that one of the extreme points must be an optimal solution. Thus, it suffices
to find a permutation matrix P such that C • P is as small as possible. In particular, we
must choose n indices with no overlapping rows or columns such that the sum of the entries
of C of these indices is a minimum. If we view C as a cost matrix, this is a variant of the
assignment problem1. There are different algorithms to solve this assignment problem, most
notably the Hungarian algorithm which runs in O(n3) time. Thankfully, MATLAB 2019a has
a function, matchpairs, which solves this problem. This function requires a cost matrix and an
unmatched cost as input. To avoid returning any unmatched tasks (which would result in a
singular ”permutation” matrix), simply set the unmatched cost larger than the largest value in
C.

1In fact, the Birkhoff polytope is also called the assignment polytope.
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