Computational Subproblems Trevor Squires

This document is a compilation of computational subproblems and their analytical solutions
that I have encountered as a result of implementing different first-order algorithms. Some may
be more detailed than others depending on how obvious the solution was to me at first.

1 Projections

In many first-order methods, a projection problem is often required to be solved per iteration
in order to solve a more general optimization problem. While there exists projection free
methods, sometimes the projection onto a specific set S can be done analytically and is not a
computational burden. We will look at a few such instances. We seek to solve problems of the
form
argmin ||z — u|?
z€S

for some convex set S C R™ and vector u € R"”.

1.1 Standard Spectrahedron

Let m? = n and notice that a projection onto the standard spectrahedron
Spe,, = {X e R™"™ | X = 0,tr(X) =1}

takes the form

argmin || X — U||%

Xe€Spe,
for some matrix U € R™*™. Since X > 0, it has eigendecomposition X = VTAV for some
orthogonal matrix V' and diagonal matrix A. If we denote X to be the vector satisfying diag(\) =
A, then by multiplying on the right and left by V7 and V respectively, we can consider the
equivalent problem without loss of generality

argmin I|A — UHQF = argmin H)\Hg —2(\,diag(U)) = argmin ||\ — diag(U)Hg
A=diag(\),tr(A)=1,A>0 Ae=1,A>0 Ale=1,A>1

after rewriting the objective function using the Frobenius product. Here, e € R™ is a vector of
all I’s and A,, := {A € R™ | A\Te = 1, A\ > 0} is usually denoted the standard simplex. That
is, projecting onto the standard spectrahedron requires projecting the diagonal of U onto the
standard simplex.

2 Solving Proximal Problems of ”Easy” Functions

There are many algorithms that assume the knowledge of an analytical solution to a proximal
problem,

. T
prox;, (7, u) := min h(w) +  [Jw —ul]

for some constant 7 € R and vector © € R™. Here, we will solve this problem for different
choices of h(w).
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2.1 2-Norm
Let h(w) = ||w — b||,. We know that

h(w) = sup (w — b, &),

lél<1
so the optimization problem becomes
argmin argmax{(w — b, &) + = Hw — u||* = argmax argmin(w — b, &) + T lJw — ul|?.
weR™ [|¢]<1 €<t weRrn 2

by the minimax theorem. An optimal solution to the min problem is w* := w*(§) such that

E+T1(w' —u)=0,ie, 0w =u— §
T
Continuing with the optimization problem, we have
. T
argmax argmin(w — b, £) + 3 l|w — ul|* = argmax (u — b, &) — — H{H + H{H

llg]]<1 weRn ligl<1
= argmax (u—b,€) — - ||c|]
lligll<1 T

= argmax 27(u — b, ) — |[¢]?
l1gll<1

= argmin [|¢|]> — 2(r(u — b), )
llell<1

= argmin ||{ — 7(u — b)H2
[l€ll<1

which is to say, project 7(u — b) to the unit ball to obtain &, then set w = u — g
2.2 Maximum Eigenvalue
Let n = m? and let h(w) denote the maximum eigenvalue of the matrix reshape(w) := W.

Rewriting prox,, (7, u) in its matrix equivalent representation, we have

min h(w)+g|yw—uy|2: min A(W)+%|\W—U|\§

’LUGR"”Q cRmMmXm

where A(WW) denotes the largest eigenvalue of W, X is the matrix corresponding to the reshaped
vector u € R™ and ||| 7 is the Frobenius norm. Since

AW)=  max (W, 4),

A=0,tr(A)=1
we have
argmin A(W) + = HW Ul|[% = argmin argmax (W, A) + T W —UJ%
WeRmxm WeRm*m Ax0,tr(A)=1 2

= argmax argmin (W, A) + r W —UJ|%.
AX0,tr(A)=1 WeRmxm 2
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Continuing as before, the inner minimization problem has solution W* satisfying A + 7(W™* —
U) = 0. Thus, it suffices to solve

2
U-=-U

1 2
= m A — A
x argmax (U, 4) — o |43

F Ax0tr(A)=1
= argmin ||A]|% — 2(UT, A)
A>0,tr(A)=1

A
argmax (U — —,A) + u
Ar0,tr(A)=1 T 2

= argmin HA—UTH%.
A=0,tr(A)=1

Our solution w to the original problem is then obtained by projecting 7U to the standard
spectrahedron to get A, setting W* =U — é and then vectorizing W* to get w*.

3 Optimizing a Linear Objective

In projection free algorithms, it is often the case that we require a solution to a linear objective
optimization problem over our feasible set. That is, we seek a solution to

x* € Argmin(c, z)
x€S

for some convex set S and cost vector ¢. We will discuss how to do this for various feasible sets.

3.1 Standard Spectrahedron

Reshaping the linear objective for matrix problems, linear objective over the standard spectra-
hedron is as follows: for any nondefective matrix C' € R™*" find X* such that

X*€e Argmin CeX
X=0,tr(X)=1

where e represents the Frobenius inner product. Without loss of generality, we may assume
that C is symmetric. Recall that

min  CeX = \C)
X=0,tr(X)=1

where A(C') is the minimum eigenvalue of C. Thus, it suffices to find an X € Spe,, := {X :
X = 0,tr(X) = 1} such that Ce X = tr(CX) = A(C). Let C have eigendecomposition U 1AU,
and k be an index such that Az, = A(C). Then choosing X* = U~ I,U where I;, = diag(ez)
implies that

CeX*=tr(UTAUUIL,U) = tr(UTALU) = \(C)

since UTTALLU has eigenvalues 0 with multiplicity n — 1 and A\(C') with multiplicity 1. Also
note that since C is symmetric, it admits an orthogonal eigendecomposition, i.e. U~! = UT.
Thus,

X*=U"'nU=U"I,U = wui.

Consequently, our linear optimization only requires us to find the eigenvector corresponding to
the eigenvalue of smallest magnitude.
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3.2 Birkhoff Polytopes

We want to efficiently compute a solution to

min C e X
XeBy,

where C' is an n X n matrix, and the Birkhoff polytope, denoted B,, is the set of doubly
stochastic matrices, i.e.

B, :={P R | Ple=¢,Pe=¢,P>0}.

Here, e denotes the n-dimensional vector of 1’s and P > 0 implies that each entry of P is
nonnegative. By the Birkhoff-von Neumann theorem, we know that B, = conv(S) where S
is the set of projection matrices. Since we are minimizing a linear objective over a convex
hull, we know that one of the extreme points must be an optimal solution. Thus, it suffices
to find a permutation matrix P such that C' e P is as small as possible. In particular, we
must choose n indices with no overlapping rows or columns such that the sum of the entries
of C of these indices is a minimum. If we view C as a cost matrix, this is a variant of the
assignment problem!. There are different algorithms to solve this assignment problem, most
notably the Hungarian algorithm which runs in O(n3) time. Thankfully, MATLAB 2019a has
a function, matchpairs, which solves this problem. This function requires a cost matrix and an
unmatched cost as input. To avoid returning any unmatched tasks (which would result in a
singular ”permutation” matrix), simply set the unmatched cost larger than the largest value in

C.

n fact, the Birkhoff polytope is also called the assignment polytope.
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