
Comp Prelim Study Material

Trevor Squires
trevorsquires9@gmail.com

Last updated January 8, 2023

Contents

I List of Topics 1
1 Math 8600 . 2
2 Math 8610 . 3

II 8600 Notes 4

1 Scientific Computing Overview 6
1 Error . 6
2 Solving Problems and Algorithm Properties . 6

2 Roundoff Errors 8
1 Representation . 8
2 Consequences of Finite Number System . 8

3 Roots to Nonlinear Equations 10
1 Bisection Method . 11
2 Fixed Point Iteration . 11
3 Newton’s Method . 12
4 Secant Method . 12

4 Direct Methods of Solving Linear Systems 14
1 Gaussian Elimination . 14
2 Forward/Backward Substitution . 14
3 LU Factorization . 14
4 Pivoting Strategies . 14
5 Condition Number . 15

5 Least Squares Problem 16
1 An Analytical Solution . 16
2 Naive Numerical Solution . 16
3 Other Numerical Methods . 17

6 Polynomial interpolation 18
1 Monomial interpolation . 19
2 Lagrange Interpolation . 19
3 Newton Polynomial Interpretation . 20
4 Error in Polynomial Interpolation . 21

7 Piecewise Polynomial Interpolation 23
1 Broken line and piecewise Hermite interpolation . 23
2 Piecewise cubic interpolation . 23
3 Cubic Spline Interpolation . 24

i

CONTENTS ii

8 Numerical Differentiation 26
1 Taylor Series Approximations . 26
2 Richardson Extrapolation . 27
3 Lagrange Polynomial Approximations . 27

9 Numerical Integration 28
1 Basic Quadrature Rules . 28
2 Quadrature Error . 29
3 Composite Numerical Integration . 29
4 Gaussian Quadratures . 30
5 Adaptive Quadrature . 31
6 Romberg Integration . 31

10 Differential Equations 33
1 Euler Methods . 33

1.1 Preliminaries . 33
1.2 Method Errors . 34
1.3 Stability . 35

2 Runge-Kutta Methods . 35

III 8610 Notes 37

11 Conditioning and Stability 39
1 Conditioning of a Problem . 39
2 Conditioning of a System of Equations . 40
3 Conditioning of Eigenvalues of Matrices . 40
4 Conditioning of Roots of a Polynomial . 41
5 Algorithm Stability . 41
6 Stability of Linear Solvers . 42
7 Conditioning of GE/LU factorization . 43

12 QR Factorization 45
1 Properties of QR . 45
2 QR Factorization via Gram-Schmidt . 46
3 QR Factorization via Orthogonal Transformations . 47
4 QR Factorization via Given’s Rotation . 49
5 Given’s Rotation Computational Cost . 49

13 Singular Value Decomposition 51
1 SVD Review . 51

1.1 Low Rank Approximations . 51
2 Computing an SVD . 52

2.1 Naive Idea . 52
2.2 Golub-Kahan Bidiagonalization . 53

IV Exercises 54

A 8600 Exercises 55
1 Scientific Computing Fundamentals . 55

1.1 Numerical Algorithms . 55
1.2 Roundoff Errors . 56
1.3 Nonlinear Equations of One Variable . 57

2 Numerical Systems Analysis . 58
2.1 Direct Methods for Linear Systems . 58
2.2 Linear Least Squares Problems . 60

3 Numerical Approximation . 61

CONTENTS iii

3.1 Polynomial Approximation . 61
3.2 Piecewise Polynomial Interpolation . 63
3.3 Numerical Differentiation . 64
3.4 Numerical Integration . 64

B 8610 Exercises 68
1 Numerical Linear Algebra Fundamentals . 68
2 Conditioning and Stability . 71
3 QR and Linear Least Squares . 76

Part I

List of Topics

1

2

Below are a list of topics for Math 8600 and 8610 taken directly from the school’s webpage.

1 Math 8600

1. Scientific computing

• Floating point number system

• Floating point arithmetic

• Sensitivity and conditioning

2. Systems of Linear Equations

• Back solving and forward solving

• Gauss transformation

• LU decomposition

• Cholesky decomposition

• Band matrix

• Vector norm, matrix norm, and condition number

• Sensitivity of a solution of a linear system

3. Linear Least Squares

• Existence of a solution of a linear least squares problem

• Normal equations

• QR decomposition

• Singular value decomposition

4. Nonlinear equations

• Rate of convergence

• Bisection method

• Regular falsi method

• Fixed point iteration

• Newton’s method

• Secant method

5. Interpolation

• Polynomial interpolation

– method of undetermined coefficients

– Lagrange interpolation

– Neville’s algorithm

– error analysis

• Piecewise polynomial interpolation

– hermite cubic interpolation

– cubic spline interpolation

6. Numerical Integration and Differentiation

• Newton-Cotes quadrature

• Gaussian quadrature

• Composite and adaptive quadrature

• Richardson’s extrapolation

3

• Romberg integration

7. Initial Value Problems for Ordinary Differential Equations

• Introduction

• One step method

– Euler method

– Taylor method

– Runge-Kutta method

– order of accuracy and error analysis

• Multi-step method

– Adams methods

– predictor-corrector method

• Stability

• Stiff equation

2 Math 8610

1. Conditioning and Stability

• Condition and condition number

• Forward and backward stability

• Growth factor and stability of LU and other similar factorizations

2. QR factorization and linear least squares

• QR factorization by modified Gram-Schmidt

• QR factorization by Householder reflectors and Givens rotations

• Linear least squares problem and solution algorithms

3. Singular value decompositions (SVD)

• Definition of SVD, and its important relations and properties

• Golub-Khan bidiagonalization and the equivalence of SVD on two symmetric eigenvalue prob-
lems

• Applications such as low-rank approximation

4. Eigenvalue problems and algorithms

• Diagonalization, complex and real Schur form

• Reduction to upper Hessenberg/tridiagonal form

• Shifted QR iteration and its important relations and properties

• Simultaneous iteration and Arnoldi/Lanczos method for computing several eigenvalues

5. Iterative methods for large sparse linear systems

• Conjugate gradient (CG) method

• Generalized minimial residual (GMRES) method

• Preconditioned linear systems

6. Iteration complexity for all non-iterative algorithms

Part II

8600 Notes

4

5

This part contains a condensed set of notes from 8600. The notes are primarily motivated by Ascher
and Grief the textbook for 8600. These are not intended to be a replacement to the comp courses, but
rather as a supplement. Motivation, big ideas, and clarity will be emphasized, but will be fairly light on
details. The fundamentals will be covered, but one is advised to attempt the problems in later sections
for full exposure. The listed topics in the previous section will be the backbone of these notes.

Chapter 1

Scientific Computing Overview

We define scientific computing as the development and studying of numerical algorithms for solving
mathematical problems. In a standard setting, one might model a naturally occurring problem using a
mathematical model. This model, usually continuous, is sometimes difficult (and often outright impos-
sible) to describe finitely. A natural step from here is to approximate the continuous (infinite) model
with a finite dimensional one - that can be solved on the computer. Numerical Analysis is the study
of of such approximations and resulting algorithms.

1 Error

Definition. Error is unavoidable in scientific computing. We quantify it with absolute and relative
error. Let u be the true value of some quantity and v be the approximation. Then we define relative
error as

Errr(u, v) :=
|u− v|
|u|

and absolute error as
ErrA(u, v) := |u− v|

In addition to quantifying error, it may be helpful to describe them. We can identify three main
sources of error

1. Modeling - A mathematical formulation rarely exactly describes a real life phenomenon. In practice,
instruments do not record exact measurements and human error is omnipresent. These issues give
us modeling errors.

2. Approximation - Although many problems can be described using an infinite process, this is not
always easy to work with. An replacement of a infinite process with a finite one introduces approx-
imation errors. Even further, we can say that

• Discretization errors arise from discretizations of a continuous process

• Convergence errors arise from the termination or truncation of an infinite process

3. Roundoff - Because we desire to use computers to solve our models, we must work in finite precision.
This finite precision leads to roundoff errors.

For this note, we will primarily be concerned with roundoff errors.

2 Solving Problems and Algorithm Properties

Once a mathematical model is formulated, an algorithm is sought after to solve the model. We may
describe an algorithm by a few characteristics

1. Accuracy - the ability to provide an accurate solution upon termination

6

CHAPTER 1. SCIENTIFIC COMPUTING OVERVIEW 7

2. Efficiency - the effort required to provide an accurate solution. This is usually measured in flops
of number of function evaluations

3. Robustness - the reliability of an algorithm. A good algorithm will work in most cases and be able
to describe the situations in which it doesn’t. It will be reliable and stable.

On the other hand, there are issues that are problem dependent and not algorithm dependent. The most
important of these is conditioning.

Definition. Problem conditioning refers to the propensity of change of a solution given a change in
input data.

We usually describe conditioning using one of two straight-forward terms

1. Ill-conditioned - a small perturbation in the data would produce a large difference in the result

2. Well-conditioned - the solution is resistant to small changes in the input data

Loosely speaking, we say that the condition number is relative output
relative input . A well conditioned problem has a

condition number close to one. This reasoning has an additional meaning for functions. Note that

cond number =

f(x)−f(x̂)
f(x)

x−x̂
x

= f ′(η)
x

f(x)
≤ max f ′(x)

x

f(x)

Chapter 2

Roundoff Errors

In this section, we discuss the aforementioned roundoff errors. While the details are of importance and
can be followed closely for an in-depth analysis, the main take away from this section is when roundoff
errors become an issue.

1 Representation

A real number x ∈ R can be written as

x = ±(1.d1d2d3 . . . dt) · βe

where di ∈ {0, 1}, e is the integer exponent, and β is the base of representation. Letting β = 2, this is
referred to as the standard binary format. Digits after the decimal point are called the mantissa. That
is, to refer to a number on a computer (in binary), we need to know

• the sign

• the mantissa

• the exponent

Note here that the first digit is always a 1 for normalization. Given such a representation, we say that
this represents

(x) = ±(
d1

β0
+ · · ·+ dt

βt−1
) · βe

However, it is far more common to work in the IEEE standard than anything else. For this reason, future
discussion will focus on the IEEE standard (with β = 2).

Definition. The IEEE standard provides specific usage of the 64 bits of precision provided by most
modern computers. It breaks them down in the following way

1. 1 bit for the sign of the number

2. 52 bits for the mantissa

3. 11 bits for the exponent

2 Consequences of Finite Number System

There are a number of issues that stem from this representation. A few are listed below

• There are largest and smallest numbers

• There are a finite number of representable quantities

• The absolute difference between two closest is not the same for all numbers

• Every number has a potential error of εmach = 2−52 ≈ 10−16. This error can accumulate if not
accounted for and ruin algorithm accuracy.

8

CHAPTER 2. ROUNDOFF ERRORS 9

Possible error sources

Some operations are more prone to significant errors than others (all operations have errors, but not all
errors are meaningful). We list a few of these below

1. Adding large and small numbers. In general, the smaller a number is, the more likely it is affected
by a large relative error. Adding a large and smaller number, i.e. 1 + 10−16, is likely to produce
large relative error.

2. Product/division of numbers close to 0. If y << 1 then xy and x
y can have large relative and

absolute error.

3. Subtraction of similarly sized numbers. If x ≈ y, then x− y ≈ 0, but due to cancellation error, can
be as large as 2εmach. The relative error is even worse.

Chapter 3

Roots to Nonlinear Equations

In this section we discuss methods of finding roots to nonlinear equations. Per the results of the Abel
Ruffini Theorem, there exists no algebraic solution to a general polynomial of degree 5 or higher. As
such, we should not expect our solutions to be finite processes, but rather iterative ones. With this in
mind, it makes sense to first consider the standard nuances of iterative algorithms: stopping criterion
and desired properties.

When solving for roots of nonlinear equations, there are a few stopping criterion that may become
useful. Let ε > 0 be some specialized tolerance and {xk}Nk=1 be the iterates of a nonlinear solver used to
solve f(x) = 0.

1. Absolute tolerance
|xn − xn−1| < ε

2. Relative tolerance
|xn − xn−1| < ε |xn|

3. Functional tolerance
|f(xn)| < ε

It is important to note that there is no dominance among these 3 criteria. We simply list them all
because some methods of convergence analysis may be more suitable for finding bounds of specific
stopping criterion. Furthermore, we would like our algorithm to (in addition to the previous discussion)
satisfy some of the following

• Small requirements on the smoothness of f

• Little dependence on function evaluations

• Generalizes easy

• Robust

Last but not least, we more accurately describe what it means for an algorithm to be slow (or fast).

Definition. There are 3 basic types of convergence for iterative methods

1. Linear Convergence
|xn+1 − x∗| < C |xn − x∗|

for C < 1.

2. Superlinear Convergence
|xn+1 − x∗| < pn |xn − x∗|

where ρn → 0, n→∞.

3. Quadratic Convergence
|xn+1 − x∗| < M |xn − x∗|2

With these in mind, we look at a few methods in particular

10

CHAPTER 3. ROOTS TO NONLINEAR EQUATIONS 11

1 Bisection Method

The motivation behind the bisection method is quite simple. For a continuous function f , if f(a) < 0 and
f(b) > 0, then by the IVT, there must exist a c between these points such that f(c) = 0. By querying
f at the right places, we can reduce the search space. That is, if a and b are the points from above and
f(c) < 0, then our search interval is reduced from [a, b] to [c, b]. Otherwise, it becomes [a, c]. In order to
minimize the expected interval change, we should choose c such that c = a+b

2 . Then with each iteration
(one function evaluation), our search interval decreases by a factor of 2.

That is, with each iteration, the absolute error decreases by a factor of 2 since

|xn+1 − x∗| < 0.5 |xn − x∗| < (0.5)n |x0 − x∗|

That is, the Bisection Method is a linearly convergent algorithm. Thus, to achieve an ε > 0 tolerance,
we need N to satisfy

N > log(
x0 − x∗

ε
) > log(

b0 − a0

ε
)

We summarize the Bisection Method with the following pros and cons

Pros

• Robust (Globally convergent)

• Only uses function evaluations

• Only needs a fixed number of iterations

Cons

• Not very efficient

• Does not generalize

2 Fixed Point Iteration

Fixed Point Iteration, or FPI, is a method of solving g(x) = x for some function g. You may wonder why
this discussion belongs in the root solving section of these notes. Hopefully it is not too hard to see that
for any equation f(x) = 0, we can find a (not necessarily unique) equation g(x) = x such that x∗ solves
the former if and only if x∗ also solves the latter. FPI considers the sequence {xn} where xn+1 = g(xn).
If this sequence converges, then we have found a point xn such that g(xn) = xn. The conditions on
which this sequence converge are demonstrated in the following theorem.

Theorem 3.1. If g ∈ C([a, b]) and a ≤ g(x) ≤ b for all x ∈ [a, b], then there is a fixed point x∗ of g in
[a, b]. Additionally, if |g′(x)| < ρ for some ρ < 1 and any x ∈ [a, b], then x∗ is unique.

Proof. Hint: Consider φ(x) = g(x)− x and use IVT.

For convergence, note that

|xk+1 − x∗| = |g(xk)− g(x∗)|
≤ |g′(ck)| |xk − x∗|
≤ |ρ| |xk − x∗|

That is, FPI is a linearly convergent method with C = ρ from the theorem.

Pros

• Easy to generalize

• Only uses function evaluations

Cons

• Not very efficient

• May be difficult to find a good function g

CHAPTER 3. ROOTS TO NONLINEAR EQUATIONS 12

3 Newton’s Method

Newton’s method is derived from the Taylor expansion of f . Instead of looking for roots of f why not
find a root of a linear approximation of f which is a considerably easier task? The linear approximation
is available via the Taylor expansion

f(x) = f(xk) + f ′(xk)(x− xk) + f ′′(ηk)(x− xk)2

for some ηk. Letting x = x∗ and ignoring the error term, this becomes

0 ≈ f(xk) + f ′(xk)(x∗ − xk)

or that

x∗ ≈ xk −
f(xk)

f ′(xk)

Of course, this is only an approximation so we instead adopt the scheme

xk+1 = xk −
f(xk)

f ′(xk)

We can prove that under suitable conditions, this is a quadratically convergent algorithm.

Theorem 3.2. Let f(x∗) = 0, f ′(x∗) 6= 0, f ∈ C2. Then for x0 chosen close enough to x∗, Newton’s
method converges at least quadratically.

Proof. Consider the Taylor expansion of f(x∗) at f(xk)

0 = f(xk) + f ′(xk)(x∗ − xk) +
1

2
f ′′(ck)(x∗ − xk)2

Rearranging we obtain

− f(xk)

f ′(xk)
= x∗ − xk +

f ′′(ck)

2f ′(xk)
(x∗ − xk)2

or that
|ek+1|
|ek|2

=
xk+1 − x∗

(x∗ − xk)2
=

f ′′(ck)

2f ′(xk)
= M

which is our definition of quadratically convergent.

Pros

• Easy to generalize

• Extremely fast

Cons

• Requires gradient

• Only locally convergent

4 Secant Method

One of the major cons of Newton’s method is that it requires us to compute gradient values at each step.
The secant method tackles this problem directly by using the secant line to approximate the gradient.
The update for the secant method is

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)

Unfortunately, this approximation loses the quadratic convergence. However, the secant method still
achieves a superlinear convergence.

CHAPTER 3. ROOTS TO NONLINEAR EQUATIONS 13

Pros

• Easy to generalize

• Super linear

• No gradient computations

Cons

• Slower than Newton’s

• Only locally convergent

Chapter 4

Direct Methods of Solving Linear
Systems

Systems of linear equations arise in every mathematical field on a consistent basis. This section overviews
a few basic techniques of solving such systems directly.

1 Gaussian Elimination

The most naive approach to solving a system Ax = b is applying a series of row reductions Q such that
QAx = Ix = Qb. In this way, the solution can be immediately read off as x = Qb. One may notice
that these row operations Q represent the operation of an inverse for A. Indeed, this method simply
computes x = A−1b. The computational cost for such an approach is O(n3) for the construction of Q
and then an addition O(n2) for the matrix-vector multiplication Qb. We will see that this is far from
the best approach.

2 Forward/Backward Substitution

An equivalently naive approach is instead of reducing A to the identity matrix, why not simply reduce
it to an upper (or lower) triangular matrix and then solve the corresponding system? That is, row
operations R are performed to transform A into an upper triangular matrix T . Once in upper triangular
form, the system Tx = Rb can be solved in O(n2). The construction, however, again takes O(n3).

3 LU Factorization

A more sustainable method would be to decompose A into upper and lower triangular matrices U and
L. In this way, the system Ax = b becomes LUx = b. Accordingly, one could solve Ly = b and then
Ux = y, i.e. one forward substitution and one backward substitution. As it turns out, this takes the
same amount of work as the reduction to an upper triangluar matrix and is reusable for future Ax = b
solves. Furthermore, LU factorization takes less time than finding an inverse, and is more numerically
stable.

To compute an LU factorization, simply reduce A to an upper triangular matrix U . For the lower
triangular matrix L, the entry Lij i > j is simply the multiplication factor used in the Gaussian elim-
ination process. That is, if Aii · lij + Aij = 0, then Lij = −lij . The diagonal elements are 1 and the
remaining elements are computed during the elimination scheme!

4 Pivoting Strategies

Gaussian Elimination is not always stable. For instance, if Aii ≈ εmach, then a resulting decomposition
could be incredibly prone to errors. To avoid this, we may want to swap rows before doing the elimination

14

CHAPTER 4. DIRECT METHODS OF SOLVING LINEAR SYSTEMS 15

at every step. That is, interchange rows such that the diagonal element is as large as it can be. This
will reduce the instability previously mentioned. However, it no longer is true that LU = A. To keep up
with the row changes, we must introduce a permutation matrix P such that LU = PA. We then simply
solve LU = Pb instead. This decomposition is called LU factorization with partial pivoting.

Additional Comments

As the name suggests, partial pivoting is not the only pivoting strategy, nor does it guarantee stability.
However, in practice, it tends to perform perfectly fine and is faster than methods that do guarantee
stability (complete pivoting). One should always consider the tradeoffs involved when deciding on algo-
rithm. Furthermore, there exists classes of matrices (diagonally dominant, SPD, etc) that are innately
resistant to numerical error in decomposition techniques and thus only require basic LU factorization.

5 Condition Number

So far, we have looked at direct methods for solving Ax = b. But in the presence of roundoff errors, we
should not expect even a direct method to produce a perfectly accurate solution. We would like some

cheap method to estimate the relative error ||x−x̂||||x|| . One such quantity is the residual

r̂ = b−Ax̂

It can be shown that even with a small residual, the error can still be incredibly large. That being said,
how can we know how good our solution ever is? Well note that

r̂ = b−Ax̂ = Ax−Ax̂ = A(x− x̂)

so
x− x̂ = A−1r̂

and by Cauchy Schwarz, we have
||x− x̂|| ≤

∣∣∣∣A−1
∣∣∣∣ ||r̂||

Furthermore, since ||b|| ≤ ||A|| ||x||, it follows that

||x− x̂||
||x||

≤ κ(A)
||r̂||
||b||

where κ(A) = ||A||
∣∣∣∣A−1

∣∣∣∣. In words, the relative error in the solution is bounded by the condition
number of the matrix A times the relative error in the residual! Thus, for an ill-conditioned matrix, even
a good residual will not guarantee a small relative error.

Another approach to error analysis is backward error analysis. The computed solution x̂ of Ax = b
can be viewed as the exact solution to a slightly perturbed problem (A+ δA)x = b+ δb. In this way, we
see that

r̂ = b−Ax̂ = (δA)x̂− δb

Plugging this into the previous equation (and assuming that the perturbation is small, i.e. ||δA|| <
1/
∣∣∣∣A−1

∣∣∣∣) we see that

||x− x̂||
||x||

≤ κ(A)

1− κ(A)(||δA|| / ||A||

(
||δb||
||b||

+
||δA||
||A||

)
In summary, a stable algorithm is responsible for producing a small residual. This will yield an

acceptably small error in the solution if the problem is well conditioned, i.e. has a small condition
number.

Chapter 5

Least Squares Problem

Last section, algorithms for solving Ax = b were introduced. Now consider the following scenario: we
seek a solution to Ax = b, but in this case, the number of rows of A are greater than the number of
columns, i.e. A ∈ Rm×n and m > n. Here, the system is overdetermined. If b 6∈ col(A), then there exists
no feasible solution.

In many disciplines, a solution to Ax ≈ b would still be desirable if Ax = b cannot be solved. There are
many ways to describe a ”good” approximation, but the way we will proceed with is rather than solving
Ax = b, we may instead solve x = argmin ||Ax− b||2. Noting that multiplication by a constant factor
and squaring does not change the minimizer (only the minimum value), this is equivalent to

x∗ = argmin
x

1

2
||Ax− b||22

which is what we will call the least squares problem.

1 An Analytical Solution

Let φ(x) = 1
2 ||Ax− b||

2
2. Then, our least squares problem is of the form minφ(x), an optimization

formulation. From optimization, we know that since φ is a convex quadratic function, necessary and
sufficient conditions for x∗ to be a minimizer are ∇φ(x∗) = 0 and ∇2φ(x∗) � 0. It is easy to compute
∇φ(x) = ATAx − AT b and ∇2φ(x) = ATA. We may assume A to be full rank (if not, then the rows
of A contain redundant information) and so xTATAx = ||Ax|| > 0 for x 6= 0 and so ATA is positive
definite. Thus, the Hessian of φ is positive definite everywhere. Consequently, our sufficient and necessary
condition for x∗ to solve the least squares problem is

ATAx = AT b

As it turns out, solving Ax ≈ b is equivalent to solving another linear system ATAx = AT b. This small
derivation is the backbone of many areas of data science and machine learning and also allows us to
transfer any knowledge of solving linear systems to solving least squares problems.

2 Naive Numerical Solution

Hopefully by now, we know better than to simply compute x = (ATA)−1AT b and call it a day. Yet,
even more stable methods such as LU factorization with partial pivoting discussed previously may have
trouble solving this system. To investigate, we must look at the conditioning of this problem.

Recall that the conditioning of solving a linear system is strongly correlated with the condition number
of the matrix. We need to compute κ2(ATA) to fully understand the difficulties. Let A = UΣV T be a
singular value decomposition of A. Then

κ2(ATA) = κ2(V ΣTΣV T) =
σ2

1

σ2
2

= κ2(A)2

16

CHAPTER 5. LEAST SQUARES PROBLEM 17

We see here that the conditioning of solving this linear system is the squared condition number of
solving a linear system of just A. In many scenarios, A is a matrix of data and cannot be assumed to
be well-conditioned. If A is poorly conditioned, i.e. κ2(A) ≈ √εmach, then any solution computed via
x = (ATA)−1AT b will have no meaningful digits. We may rely on this approach for small systems with
small condition numbers, but for larger matrices, we must find another approach.

3 Other Numerical Methods

The two suggestions here rely on QR and SVD decomposition methods. Properties and computation of
these factorizations will be covered later, but we only rely on the basics here. For QR factorization, the
solution via normal equations reduces to be

x = (ATA)−1AT b = (RTQTQR)−1RTQT b = (RTR)−1RTQT b = R−1QT b

Now suppose R = UΣV T is an SVD of R. Then A = QR = (QU)ΣV T is a valid SVD for A. Thus, the
singular values of R are the same as those of A and therefore κ2(R) = κ2(A). Indeed, solving the least
squares problem in this manner has condition number κ2(A) instead of κ2(A)2.

Alternatively, let A = U

[
Σ
0

]
V T be a full SVD of A. Then by properties of orthogonal matrices

||Ax− b|| =
∣∣∣∣∣∣∣∣U [Σ0

]
V Tx

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣[Σ0
]
V Tx− UT b

∣∣∣∣∣∣∣∣

Letting UT b =

[
y
z

]
, it follows that

||Ax− b|| =
∣∣∣∣y − ΣV Tx

∣∣∣∣+ ||z||

Thus, in order to solve the least squares problem, it suffices to minimize
∣∣∣∣y − ΣV Tx

∣∣∣∣ instead. This
yields system

ΣV Tx = y

to solve. Again, note that IΣV T is a valid SVD for the matrix in question so it has the same singular
values as A. Thus, κ2(A) = κ2(ΣV T). This is yet another more stable approach to solving the least
squares problem. Note that these decompositions of A will take time to compute and are thus more
costly operations wise but yield more stable numerical solutions.

Chapter 6

Polynomial interpolation

In this section we build up the foundation for the next few sections. Many topics in numerical analysis
such as ODE’s and integration rely on polynomial interpolation to work their magic. Here, we describe
some basic techniques and a few results that will come in handy for future sections.

Function approximation can roughly be broken down into two categories: data fitting and approx-
imating functions. They are different, but the distinction is subtle. Data Fitting is the process of
finding a function that ”fits” some data points. We use the term fit here loosely because there are differ-
ent ways a function can fit a dataset. One such example is interpolation, i.e. the function passes through
each point exactly. However, a function may fit in the least squares sense where the function is simpler,
but may not interpolate exactly as is the case with linear regressions. Approximating functions are
exactly that - functions that approximate other functions. It should be noted that the difference between
these two is that the latter is identical to those of data fitting once we specify the data points.

For approximating functions, we generally assume a linear form

v(x) =

n∑
j=0

cjφj(x)

where {cj}nj=0 are unkown coefficients and {φj}nj=0 basis functions for the space we wish to approximate
in. Note that v(x) is linear wrt the basis functions and not x itself. Furthermore, we assume that the
basis functions are linearly independent.

By default, we assume that the number of data points and the number of basis functions used are
equal. If there are fewer basis functions than data, then the resulting system to solve for the coefficients
cj would be overdetermined, and the problem would be reduced to a least squares one previously covered.

Suppose we have data points {xj , yj}nj=0 and basis functions {φj}nj=0. Then the coefficients can be
found by solving the linear systemφ0(x0) . . . φn(x0)

...
. . .

...
φ0(xn) . . . φn(xn)

c0...
cn

 =

y0

...
yn

Again, we have reduced our current problem (polynomial interpolation) to one that we have already
solved (linear systems). Thus, the same principles from previous chapters, such as conditioning and
stability, are present here.

There is one additional point to be made about interpolation. Although we make the argument above
that polynomial interpolation is immediately understood via solutions of linear systems, there is also the
point of application. A polynomial interpolant isn’t constructed to sit and be observed. It is generally
evaluated. That is, there are two steps to polynomial interpolation: construction and evaluation. Most
of construction is inherited from solutions of linear systems. The next few sections will analyze different
choice of basis functions for construction with evaluation being considered on a ”as necessary” basis.

18

CHAPTER 6. POLYNOMIAL INTERPOLATION 19

1 Monomial interpolation

Perhaps the simplest basis for the n + 1 degree polynomial space is the monomial basis, φj := xj . An
interpolating polynomial p would then have to satisfy p(xi) =

∑n
j=0 cjx

j for some cj . Assuming (for
now) that xi 6= xj for i 6= j, the corresponding linear system for coefficients cj is1 . . . xn0

...
. . .

...
1 . . . xnn

c0...
cn

 =

y0

...
yn

The coefficient matrix X in question here is known as Vandermonde matrix. From linear algebra, we
know that

detX =

n−1∏
i=0

n∏
j=i+1

xj − xi

that is, under our distinct data point assumption, the determinant is non-zero and the corresponding
interpolant is unique as described in the following theorem.

Theorem 6.1. For any real data points {xj , yj}nj=0 with distinct abscissae xi there exists a unique
polynomial p(x) of degree at most n which satisfies the interpolation conditions

p(xi) = yi, i = 0, 1, . . . , n

We can summarize the monomial interpolation technique in just a few points

1. The coefficients computed may completely change if we only slightly modify the interpolation
problem (more on this later)

2. The data matrix X is often ill-conditioned as n grows large or as the data points themselves spread
out.

3. The construction stage requires O(n3) steps, but the evaluation can be done as quickly as O(n)
with only roughly 2n flops per point.

It is important to point out that the latter two disadvantages are not prevalent in small datasets.
Monomial interpolation is a perfectly acceptable method for such cases.

2 Lagrange Interpolation

Monomial interpolation is quite straight-forward. It would be the first approach of any naive attempt.
In fact, one of its major upsides is that it is easy to understand. Lagrange interpolation, in contrast, is
not so. Nonetheless, let us proceed as intuitively as possible.

The main computational drawback of monomial interpolation is solving the linear system. What if
we found a polynomial basis such that cj = yj? Then, such a representation would be easy to manipulate
and significantly reduce the construction costs. These polynomial bases are the Lagrange polynomials
Lj(x) which satisfy

Lj(xi) =

{
0 i 6= j

1 i = j

Thus, by letting

p(x) =

n∑
j=0

yjLj(x)

we have formed our polynomial interpolant. Indeed, it satisfies the interpolation condition because

p(xi) =

n∑
j=0

yjLj(xi) = yi

CHAPTER 6. POLYNOMIAL INTERPOLATION 20

for any i.

With the construction stage a mere formality, what left is there to do? This is where evaluation becomes
important. Let us look at the Lagrange polynomials.

Lj(x) =

n∏
i=0
i6=j

(x− xi)
(xj − xi)

Indeed, the n roots of the polynomial must be xi for i 6= j. To ensure Lj(xj) = 1, we must also divide
out by xj − xi for every i 6= j. Thus, giving us the representation above. With all of this in hand, we
are ready to do evaluation.

Notice that we can construct the denominators of the n + 1 Lagrange polynomials without the use
of an evaluation point x. Let us compute

ρj =
∏
i 6=j

(xj − xi), wj =
1

ρj

This requires roughly n2 flops. We call the wj barycentric weights. For evaluation, we may define the
function

ψ(x) =

n∏
i=0

x− xi

to obtain the interpolant

p(x) = ψ(x)

n∑
j=0

wjyj
x− xj

For any given argument x, the above takes roughly 5n flops.
We can simplify this slightly further. Note that the function f(x) ≡ 1, it must be that yj for all j.

Since f is a degree 0 polynomial, it must be the degree n interpolating polynomial for any n. Thus,

1 = ψ(x)

n∑
j=0

wj · 1
x− xj

That is, ψ can be computed using quantities that are already used. This brings us to the final represen-
tation used for evaluation

p(x) =

∑n
j=0

wjyj
x−xj∑n

j=0
wj

x−xj

for any x.

3 Newton Polynomial Interpretation

The previous two basis functions fail to be flexible with respect to a growing dataset and also do not
make it very easy to compute error in the interpolant. The Newton polynomial basis approach, however,
does. We can view the Newton polynomial basis as a compromise of monomial and Lagrange: set

φj(x) =

j−1∏
i=0

x− xi

for j = 0, 1, . . . , n. Here we see that by construction of the basis functions, an interpolant constructed in
this way is adaptive. That is, to compute the kth coefficient, only the first k data points are required.
This allows us the flexibility of not having all data at once as is often the case with lab experiments.

CHAPTER 6. POLYNOMIAL INTERPOLATION 21

Furthermore, the coefficients are themselves solutions of a lower triangular system. One could theo-
retically form such a system and solve for the coefficients, or use the following: let

f [xi] = f(xi)

f [xi, . . . , xj] =
f [xi+1, . . . , xj]− f [xi, . . . , xj−1]

xj − xi

and then set f [x0, . . . , fj] = cj . The cj ’s are known as divided differences. Note that the textbook these
notes are transcribed from (and the corresponding lecturer notes) show how one can form a divided
difference table recursively, but is no more than fancy bookkeeping and will not be shown here.

4 Error in Polynomial Interpolation

Let us briefly discuss possible error in the approximations. We define an error function of an interpolant
pn(x) as

en(x) = f(x)− pn(x)

Newton’s approach allows us to cleverly compute such an error. The error at a new point x is simply
the difference between the polynomial interpolant already computed evaluated at x and the polynomial
interpolant that includes x. Mathematically, that is

f(x) = pn+1(x) = pn(x) + f [x0, . . . , xn, x]φn(x)

and so
en(x) = f(x)− pn(x) = f [x0, . . . , xn, x]φn(x)

Furthermore, because the interpolating polynomial is unique, this is precisely the error no matter which
basis is used. Unfortunately, this depends on the data and the evaluation point x. We continue our
search for a more general error bound.

Assuming f is smooth enough, we may replace the divided differences by their corresponding derivatives
to yield

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
φn(x)

for some ξ. The only remaining unknowns are φn(x) and f (n+1)(ξ). By upper bounding these, we obtain
the following result.

Theorem 6.2. If pn interpolates f at the n + 1 points x0, . . . , xn and f has n + 1 bounded derivatives
on an interval [a, b] containing these points, then for each x ∈ [a, b] there exists a point ξ = ξ(x) ∈ [a, b]
such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
φn(x)

with error bound

max
a≤x≤b

|f(x)− pn(x)| ≤ 1

(n+ 1)!
max
a≤t≤b

∣∣∣f (n+1)(t)
∣∣∣ max
a≤s≤b

n∏
i=0

|s− xi| (6.1)

This error bound is so important that it is one of the few equations in this monograph that will earn an
equation number.

Minimizing Error

Suppose that we are tasked with approximating a function, but are allowed to choose our interpolating
points ourselves. Notice that from the error bound computed previously, this is our only hope at mini-
mizing the error anyways. It suffices to choose points such that the product of distances between points
is minimized. Such a choice is provided by the Chebyshev points. These points are defined on the
interval [−1, 1] by

xi = cos

(
2i+ 1

2(n+ 1)
π

)

CHAPTER 6. POLYNOMIAL INTERPOLATION 22

for i = 0, . . . , n. For a general interval [a, b], apply the transformation

xi ← a+
b− a

2
(xi + 1)

For points in the [−1, 1] interval, the interpolant using the Chebyshev points satisfies1

max
−1≤x≤1

|f(x)− pn(x)| ≤ 1

2n(n+ 1)!
max
−1≤t≤1

∣∣∣f (n+1)(t)
∣∣∣

1see appendix for Chebyshev polynomial discussion

Chapter 7

Piecewise Polynomial Interpolation

The contrast between the error of an ordinary polynomial interpolant and that of one with Chebyshev
points should indicate that polynomial interpolation can be quite bad if we are not allowed to choose
our points cleverly. In such a case, equation (6.1) shows us that by decreasing the size of the interval,
we can also reduce the error1. Piecewise polynomial interpolation accomplishes this by reducing the
overarching problem into many smaller ones. This decomposition will also allow our interpolant to be
globally flexible. That is, if one were to change a data realization yi, only the subinterval containing
the corresponding xi will be affected. This is not the case for polynomial interpolation covered in the
previous section.

That is, we may divide an interval [a, b] into a smaller number of subintervals by the partition

a = t0 < t1 < · · · < tr = b

and use a low degree polynomial interpolant for each subinterval. Call these interpolants si(x). These
are then patched together to form a continuous global interpolating curve which satisfies

v(x) = si(x)

for any ti ≤ x ≤ ti+1, i = 0, . . . , r − 1.

1 Broken line and piecewise Hermite interpolation

The simplest piecewise interpolation is piecwise linear, ”broken line” interpolation. In this approach,
the s′is are simply linear functions. We can even compute the global error on the interval [a, b] using
equation (6.1). Let v(x) represent the global interpolant. For any argument ti ≤ x ≤ ti+1, the error is
obtained by f(x)− v(x) = f(x)− si(x). For a linear interpolant, this error from (6.1) is

f(x)− si(x) =
f ′′(ξ)

2!
(x− ti)(x− ti+1)

The maximum value of the RHS is achieved at x = ti+ti+1

2 . Letting h = max
1≤i≤r

ti+1 − ti, it follows that

|f(x)− v(x)| ≤ h2

8
max
a≤ξ≤b

|f ′′(ξ)|

Unfortunately, only enforcing continuity forces us to give up the hopes of differentiability. In some cases,
this is not so desirable. Let us look at techniques that ensure differentiability.

2 Piecewise cubic interpolation

The reason we cannot guarantee differentiability is that a linear function only has two degrees of freedom.
With n interpolants, that is only 2n degrees of freedom. The interpolating conditions are si(xi) = f(xi)

1Note that a simple rescaling of the x-axis will not work. Convince yourself why

23

CHAPTER 7. PIECEWISE POLYNOMIAL INTERPOLATION 24

and si(xi + 1) = f(xi + 1) for each i which is a total of 2n conditions. Thus, there is no room for
differentiability. The natural way to alleviate this is to move to a higher degree polynomial. By far the
most common choice outside of linear is cubic. By writing si(x) = ai+bi(x− ti)+ci(x− ti)2 +di(x− ti)3,
there are a total of 4n degrees of freedom to enforce constraints for. The next two sections will cover
ways to choose these conditions.

Piecewise cubic Hermite interpolation

Recall that the continuity conditions take up 2n of the 4n degrees of freedom available. If the values
f ′(ti) are provided, we can further ensure that the derivative of our interpolant v′(x) is also continuous
in an analogous way. This provides 2n more conditions which totals to our degrees of freedom. These
conditions written explicitly are of course

s′i(ti) = f ′(ti) and s′i(ti + 1) = f ′(ti+1)

This interpolation technique is known as Hermite cubic interpolation. One very handy property of
such an interpolant is that each piece can be computed independently. That is, the approximation is
completely local. Furthermore, one should expect that using more points does indeed provide us with a
better error estimate. Indeed, it would do the reader well to prove the following theorem.

Theorem 7.1. Let v interpolate f at the n + 1 points x0 < · · · < xn and define h = max
1≤i≤n

xi − xi−1

and assume f has as many bounded derivatives as necessary for the bounds below on an interval [a, b]
containing these points. Then, using a local constant, linaer, or Hermite cubic interpolation, for each
x ∈ [a, b] the interpolation error is bounded by

|f(x)− v(x)| ≤ h

2
max
a≤ξ≤b

|f ′(ξ)| piecewise constant

|f(x)− v(x)| ≤ h2

8
max
a≤ξ≤b

|f ′′(ξ)| piecewise linear

|f(x)− v(x)| ≤ h4

384
max
a≤ξ≤b

|f ′′′′(ξ)| piecewise cubic Hermite

3 Cubic Spline Interpolation

Of course, the main disadvantage with Hermite cubics is the need for derivative values. As with everything
in numerical analysis, it is best to have a methodology for when these are not available. Enter cubic
splines. Our setting is again the same: approximate each interval with an interpolating cubic. However,
with cubic splines, the remaining conditions are used to ensure that v ∈ C3. That is, the conditions to
be satisfied by the cubic spline are

si(xi) = f(xi) i = 0, . . . , n− 1

si(xi+1 = f(xi+1) i = 0, . . . , n− 1

s′i(xi+1) = s′i+1(xi+1) i = 0, . . . , n− 2

s′′i (xi+1) = s′′i+1(xi+1) i = 0, . . . , n− 2

Note that the latter two equations only provide 2n−2 conditions because they only apply to the interior
intersections. Thus there are even more variants that handle these remaining conditions differently.

1. The free boundary approach, giving a natural spline:

v′′(x0) = v′′(xn) = 0

Although popular, there is no reason to believe that this additional constraint improves the inter-
polation. It is widely used for its simplicity.

CHAPTER 7. PIECEWISE POLYNOMIAL INTERPOLATION 25

2. If f ′ is available on interval ends (such as with some boundary value problems) then the clamped
boundary may be considered, specified by

v′(x0) = f ′(x0), v′(xn) = f ′(xn)

The interpolant here is known as the complete spline.

3. The third alternative is called not-a-knot. This approach ensures continuity of the third derivative
the spline interpolant at the the nearest interior break points x1 and xn−1. That is,

s′′′0 (x1) = s′′′1 (x1) and s′′′n−2(xn−1) = s′′′n−1(xn−1)

Constructing the cubic spline

The trade-off of ensuring differentiability is that now each interpolant depends on those immediately
next to it. The effect diminishes significantly the further out we go, but one serious downside is that the
construction is not so simple anymore. Unlike before with Hermite cubics, the coefficients in the splines
must be computed simultaneously. The derivation for the following algorithm is not given, but one is
encouraged to try and explain it on your own. To obtain coefficients {ai, bi, ci, di}n−1

i=0 , simply

1. Set ai = yi = f(xi).

2. Construct and solve a tridiagonal system of equations for the unknowns c0, . . . , cn using the two
boundary conditions of your choosing and the equations

f [xi−1, xi]− hi−1(2ci−1 + ci) + 2hi−1ci−1 + hi−1(ci − ci−1) = f [xi, xi+1]− hi
3

(2ci + ci+1)

3. Set the coefficients di for i = 0, . . . , n− 1 by

di =
ci+1 − ci

3hi

4. Set the coefficients bi for i = 0, . . . , n− 1 by

bi = f [xi, xi+1]− hi
3

(2ci + ci+1)

The corresponding interpolant for xi ≤ x ≤ xi+1 is

si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

Chapter 8

Numerical Differentiation

In my opinion, this is perhaps the easiest and most straight-forward section in this document. Here,
we discuss the topic of numerical differentiation. Although a very routine and often easy task for early
level college students, differentiation is not so trivial numerically. As a powerful tool in ODE’s (a later
chapter), numerical differentiation is a topic that is essential for any scientific computing text. However,
most of the ingredient have already been discussed. For this reason, this section is rather short, but do
not mistake this for irrelevance.

1 Taylor Series Approximations

Let f be a sufficiently smooth function with x0 existing within its domain. We seek a cheap, accurate ap-
proximation to f ′(x0), preferably through functional evaluations. As with many things in computational
courses, a solid first approach is to consider a Taylor series expansion. Indeed, note that

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(ξ)

for some ξ ∈ (x0, x0 + h). Solving for f ′(x0) gives

f ′(x0) =
f(x0 + h)− f(x0)

h
+
h

2
f ′′(ξ) ≈ f(x0 + h)− f(x0)

h

which will refer to as a one-sided, two point formula. We say one-sided since the function evaluations
are only points larger (or smaller) than x0 and two point because there are two function evaluations
involved. This particular approximation is commonly known as the forward difference formula for f ′(x0)
and has truncation error O(h).

There is nothing particular about the Taylor series expansion chosen here, barring the fact that f ′(x0)
lies readily available. Indeed, we may arrive at a different approximation in a similar way using a two
point, centered formula. Let

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(ξ1)

f(x0 − h) = f(x0)− hf ′(x0) +
h2

2
f ′′(x0)− h3

6
f ′′′(ξ2)

be two Taylor expansions. Then subtracting the second from the first and solving for f ′(x0), we obtain

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− h2

6
f ′′′(ξ)

Here, we used the intermediate value theorem in (??) to arrive at our error term. Note that we only used
two evaluations of f , but still obtained a second order accurate approximation. A downside to this is
that the method is two-sided and the points are more spread apart than those in the forward difference
formula.

26

CHAPTER 8. NUMERICAL DIFFERENTIATION 27

As long as our tolerance for long, redundant Taylor series expansions does not falter, we may continue
to compute both higher order approximations as well as approximations of higher orders. However, we
will not spend too much time here, only noting the possible approach.

2 Richardson Extrapolation

Rather than deal with complicated Taylor series expansions, which will unfortunately come back to us,
let us take a look at another approach for generating higher order approximations. Suppose we have two
order q approximation formulas for f ′(x0), g1(x0, h) and g2(x0, h) with errors e1h

q and e2h
q. Then for

constants c1, c2 such that c1e1 + c2e2 = 0, the approximation

f ′(x0) =
c1g1(x0, h) + c2g2(x0, h)

2

has error of order O(hq+1). This technique is known as Richardson extrapolation.
If the Taylor series approach was not compelling enough to convince you that the generation of

highly accurate approximation formulas is quite simple, then Richardson’s extrapolation should leave
you satisfied. As with anything else in this text though, it does not come without a cost. Such formulas
proposed here require ”sufficiently smooth” functions. For high order formulas, we required many nicely
bounded derivatives of f , which may not always be possible. Furthermore, approximations through
Richardson extrapolation is the formulas are not compact, and often use points from a wider area than
necessary.

3 Lagrange Polynomial Approximations

It would be a shame if we did all this polynomial interpolation work previously and never put it to use.
Fear not, Lagrange interpolation provides us with remarkably easy to produce differentiation formulas
- so much so that you may wonder why we even bothered with the first two sections. Recall that the
degree n interpolating polynomial through point x0, . . . , xn is given by

pn(x) =

n∑
i=0

f(xi)Li(x)

with error term en(x) =
∏n
i=0(x− xi)f [x0, . . . , xn]. Thus, by differentiating, we get

f ′(x) =
n∑
i=0

f(xi)L
′
i(x)

with error term e′n(x). Evaluating at x0 gives the almost-too-clean-to-be-comp expression

f ′(x0) =

n∑
i=0

f(xi)L
′
i(x0)

with error e′n(x0). As you may have guessed it, neither the error term nor the derivatives of the Lagrange
polynomials are particularly easy to evaluate in the sense that I certainly don’t want to include their
expressions. However, rest assured that it can be done. Last but not least, under an equidistant point
assumption, the error is O(hn).

Chapter 9

Numerical Integration

Just as the previous chapter, numerical integration is also crucial in the development of numerical ODE’s
discussed next. Furthermore, much of this chapter is motivated by simple polynomial interpolation
covered previously. However, unlike the previous section, analysis in numerical integration is not as easily
derived. This comes from the simple fact that it is in general much easier to differentiate symbolically
than it is to integrate. Consequently, motivation will be key here while direct computation will be left
as exercises.

1 Basic Quadrature Rules

Continuing with the assumptions of smoothness asserted previously, our problem is now to find a nu-

merical solutions to
∫ b
a
f(x)dx. Similar to before, note that

∫ b
a
pn(x)dx approximates

∫ b
a
f(x)dx. Using

our Lagrange interpolation form, we have that∫ b

a

f(x)dx ≈
∫ b

a

pn(x)dx =

∫ b

a

n∑
i=0

f(xi)Li(x)dx =

n∑
i=0

f(xi)

∫ b

a

Li(x)dx

A numerical integral of this form is called a quadrature with ai =
∫ b
a
Li(x)dx and xi called the quadrature

weights and nodes, respectively. Here, we may choose our xi freely and use our Lagrange interpolation
polynomials to compute the quadrature weights. It is important to note here that once an a and b are
fixed, the quadrature weights are computed once, and only once. That is, they do not depend on the
integrand itself. Let us show a few examples.

Example 9.1 (Trapezoidal Rule). Set n = 1 and interpolate at the ends x0 = a and x1 = b. Then

L0(x) =
x− b
a− b

, L1(x) =
x− a
b− a

with weights ∫ b

a

x− b
a− b

dx =
b− a

2∫ b

a

x− a
b− a

dx =
b− a

2

The resulting interpolant is known as the trapezoidal rule and has the following form

If ≈ Qf =
b− a

2
[f(a) + f(b)]

Example 9.2 (Simpson Rule). Letting n = 2, x0 = a, x1 = a+b
2 , x2 = b gives us the Simpson rule given

by

If ≈ Qf =
b− a

6

[
f(a) + 4f

(
b+ a

2

)
+ f(b)

]
28

CHAPTER 9. NUMERICAL INTEGRATION 29

A quadrature rule based on polynomial interpolation at equidistant abscissae are referred to as
Newton-Cotes forms. These two examples have the special property that f(a) and f(b) are explicitly
used in the computation. Quadrature rules satisfying this are called closed formulas. An example of an
open formula is the midpoint rule given by

If ≈ Q(f) = (b− a)f

(
a+ b

2

)

2 Quadrature Error

The error discussion of quadrature rules is where this section differs most drastically from the previous.
Recall that the error induced by quadrature rules based on polynomial interpolation takes the form

E(f) =

∫ b

a

f(x)dx−
∫ b

a

pn(x)dx =

∫ b

a

f(x)− pn(x)dx =

∫ b

a

f [x0, x1, . . . , xn, x]

n∏
i=0

(x− x0)dx

In the past, there were simple cases where E(f) could be computed at least up to a constant. Unfortu-
nately, the best we can muster here is on a case-by-case basis. The interested reader should attempt to
replicate the results below (see exercises for example). Nonetheless, we present the error bounds without
proof

Etrap(f) =
f ′′(η)

12
(b− a)3

Esimp(f) =
f ′′′′(ζ)

90
(
b− a

2
)5

Emid(f) =
f ′′(η)

24
(b− a)3

In addition to error, another quantity used to measure quadrature rules is the precision, or degree of
accuracy. If a quadrature formula satisfies E(f) = 0 for all polynomials of degree p or less, then we say
that the quadrature Q(f) has precision p. For example, trapezoidal and midpoint have precision 1, and
the Simpson rule has precision 3 1. If the success of the midpoint rule catches your attention, then you
have a healthy amount of skepticism. Indeed, the midpoint rule only uses one function compared to the
trapezoidal’s two, but maintains the same precision and only slightly higher error (a constant of 2). The
trapezoidal rule makes its presence known in composite numerical integration.

3 Composite Numerical Integration

In order to decrease the error of a quadrature, we have two realistic options. One is simply use a
quadrature formula with a higher ordered error term. This approach tends to suffer greatly because in
order to achieve such, more evaluation points are needed. Should this not bother you, it is suggested that
you go and read the chapter on polynomial interpolation again. The only remaining option is to decrease
the interval size. That is, apply the same technique we did with polynomial interpolation. However,
here, there is no need to enforce smoothness conditions and as such the composite numerical integration
formulas are a seamless transition from their single interval counterparts.

Thus, in its simplest form, divide the interval [a, b] into r equal subintervals of length h = b−a
r each.

Then by addititivity of integration,∫ b

a

f(x)dx =

r∑
i=1

∫ a+ih

a+(i−1)h

f(x)dx =

r∑
i=1

∫ ti

ti−1

f(x)dx

where ti = a+ ih. Consequently, the error is simply the error committed by each individual subinterval.
Although what follows may have a different form than before, make no mistake, it is simply the quadrature

1In fact, it is possible to derive all these rules independently by simply enforcing these degrees of accuracy along with
the abscissae

CHAPTER 9. NUMERICAL INTEGRATION 30

applied to each individual subinterval. We proceed nevertheless. The composite trapezoid rule yields∫ b

a

f(x)dx ≈ h

2

r∑
i=1

[f(ti−1 + f(ti)]

=
h

2

[
f(a) + f(b) + 2

r−1∑
i=1

f(ti)

]

with error

E(f) =

r∑
i=1

(
−f
′′(ηi)

12
h3

)
= −f

′′(η)

12
(b− a)h2

Before deriving the composite Simpson and midpoint rules, note the beauty of closed form quadrature
rules here. The function evaluations on the beginning and end of each subinterval are repeated. That
is, although the trapezoidal rule requires 2 function evaluations per interval, the composite version only
requires r+1 evaluations for r subintervals. An open point formula, such as midpoint, will not be able to
reuse evaluations and is less efficient in the generalization. Indeed, we continue with both the composite
Simpson and midpoint rules, respectively

∫ b

a

f(x)dx ≈ h

3

f(a) + f(b) + 2

r/2−1∑
k=1

f(t2k) + 4

r/2∑
k=1

f(t2k−1)

∫ b

a

f(x)dx ≈ h
r∑
i=1

f(a+ (i− 1/2)h)

You are free to compute their errors.

4 Gaussian Quadratures

Up until this point we have been considering Newton-Cotes quadrature formulas that are based on
equidistant evaluation points. But we have (hopefully) learned that such a choice of abscissae can
perform quite poorly. Indeed, recall that the error of a quadrature based on polynomial interpolation is

E(f) =

∫ b

a

f [x0, x1, . . . , xn, x]

n∏
i=0

(x− xi)dx

Suppose that f is a polynomial of degree m ≤ n. Then

f [x0, x1, . . . , xn, x] =
f (n+1)(ξ)

(n+ 1)!
= 0

That is, for any n+ 1, we will generate a formula of precision n. We would optimistically hope that by
choosing the n+ 1 parameters carefully, we can obtain 2n+ 1 precision. To attempt this, recall that the
Legendre polynomials {φi(x)}n+1

i=0 form an orthogonal basis for polynomials of degree at most n in the
sense that ∫ b

a

φi(x)φj(x)dx = 0, i 6= j

and ∫ b

a

g(x)φn+1(x)dx = 0

for any polynomial g of degree less than or equal to n. By setting xi to be the ith root of the Legendre
polynomial φn+1(x), we have that

E(f) =

∫ b

a

Kf [x0, x1, . . . , xn, x]φn+1(x)dx

CHAPTER 9. NUMERICAL INTEGRATION 31

for an appropriate constant K. Since for a function f of degree m, f [x0, x1, . . . , xn, x] is of degree
m− n− 1, it follows that

E(f) =

∫ b

a

Kf [x0, x1, . . . , xn, x]φn+1(x) = 0

for any polynomial f that satisfies m − n − 1 ≤ n ⇔ m ≤ 2n + 1. That is, this quadrature rule has
precision 2n+ 1, the most we can logically expect2. This is known as the Gaussian quadrature since the
roots of the Legendre polynomials are called Gauss points. Note that such a procedure requires us to
compute both the weights and the nodes, but, just as with the weights, the nodes only need to computed
for a single interval [a, b] and degree n - not for a particular integrand.

Furthermore, it is often the case that we wish to approximate
∫ b
a
f(x)w(x)dx for some weight function

w. Rather than directly apply the above techniques, suppose we seek a solution of the form
∑n
i=0 aif(xi),

i.e. the evaluations are only on f . We may follow the same procedure as the Gauss quadrature above,
except the nodes must be the roots of an orthogonal polynomial basis with respect to w(x). That is, if
{αi}n+1

i=0 is a basis for polynomials of degree n or less and∫ b

a

αi(x)αj(x)w(x)dx = 0, i 6= j

then letting the nodes of our quadrature formula be the roots of αn+1 will produce a rule with precision

2n + 1 for approximating
∫ b
a
f(x)w(x)dx. We may use Gram-Schmidt to compute such an orthogonal

basis.

5 Adaptive Quadrature

We can certainly conjure up examples where a function is wild over a subinterval [c, d], but moderately
mild everywhere else in [a, b]. In such a case, we would be required to use many subintervals in composite
quadrature techniques to ensure a small error over the wild interval. But this would be significant overkill
for the rest of the interval [a, b]. A natural solution to this is to simply only use as many subintervals
as necessary to achieve a particular error goal. In order to achieve such an optimistic task, we need to
know when a particular quadrature estimate is good or bad. We can do this by approximating its error.

Consider a rule with error written as E(f) = E(f ;h) = Khq−1 +O(hq) for some constant K. Let us
compute two approximations R1 and R2 using the same quadrature rule with h and h/2. The first error
If − R1 is approximately Khq while the second If − R2 is K(h/2)q = Khq/2q. Then we may compute
the errors in terms of R1 and R2 as

If −R1 ≈
2q

2q − 1
(R2 −R1)

If −R2 ≈
1

2q − 1
(R2 −R1)

Since R2 is the better approximation, if If−R2 < ε for some specified tolerance ε, then our approximation
is good. If not, then we can simply split our bad interval in 2 and recursively perform the same quadrature
rule over the subintervals until they satisfy the tolerance. This allows us to use many subintervals where
necessary, and few when not. There are a few subtleties here that a robust program will address3, but
hopefully the idea is clear enough to understand.

6 Romberg Integration

Lastly, we present a procedure known as Romberg integration. It can be thought of as the integration
version of Richardson extrapolation both in results and derivation. It can be shown (and perhaps one
should) that the error for the trapezoidal rule4 can be written as

E(f ;h) = K1h
2 + · · ·+Ksh

2s +O(h2s+1)

2It is important to point out that these nodes are chosen to maximize the precision of a rule and not necessarily the
error, should it have any.

3such as the error being only an approximation, making sure to reuse function evaluations, etc
4Consider tracking our optimism with the trapezoidal rule throughout this chapter. It is an excellent example of the

difference between mathematically feasible and computationally feasible approaches.

CHAPTER 9. NUMERICAL INTEGRATION 32

O(h2) O(h4) O(h6) . . . O(h2s)

R1,1

R2,1 R2,2

R3,1 R3,2 R3,3

...
...

...
. . .

Rs,1 Rs,2 Rs,3 . . . Rs,s

Figure 9.1: Romberg Table of Integration

for some constants Ki. As with Richardson extrapolation, we can also extrapolate the trapezoidal rule
for higher order approximations. Consider approximations R1,1 and R2,1 based on h1 = h = b − a and
h2 = h

2 . The errors are

E1,1 = K1h
2 +K2h

4 + . . .

E2,1 = K1(h/2)2 +K2(h/2)4 + . . .

We can see that E1,1 − 4E2,1 = O(h4). Coming back to our quadratures, it follows that

E1,1 − 4E2,1 = (4R2,1 −R1,1)− 3If

Therefore,

If =
4R2,1 −R1,1

3
+O(h4)

That is, R2,2 = R2,1 +
R2,1−R1,1

3 is a O(h4) accurate approximation to If . Not unlike Richardson
extrapolation, we can continue this process to theoretically achieve an arbitrary small error. In fact,
such a process is done cleanly using a Romberg table shown in Table 9.1. Note that the table can be
generated each row at a time. That is, we may generated approximations in an adaptive manner. Much
of the same problems persist, however. For very small h, roundoff errors start to dominate. Also, for
rough functions, the lower order terms may not necessarily dominate as proposed since the constants
themselves depend on high order derivatives of f . Thus, Romberg integration is most reliably applied
to smooth functions with a need for high degree accuracy.

Chapter 10

Differential Equations

The materials presented in this chapter have an acquired taste. On one hand, all of the build in the
previous chapters takes form in differential equations making it a particularly strong section to serve as
a general review. On the other hand, much of the analysis becomes less elegant and more ”left to the
reader”. Furthermore, there is quite a bit of content in just simple ordinary differential equations - so
much so that in this chapter we often present a logical derivation or example of an idea and leave natural
extensions of it to the problem sets to follow. Nonetheless, differential equations are without a doubt
one of the most important tools an applied mathematician can have.

1 Euler Methods

1.1 Preliminaries

In this chapter we seek a solution to y′(t) = f(t, y) for a ≤ t ≤ b. Here, we are looking for a particular
function y, or rather y(t) for all t ∈ [a, b]. We typically refer to the independent variable as t since
a majority of differential equations are time based, but this need not be the case. Let us look at two
examples.

Example 10.1. Consider the function f(t, y) = t− y defined over t ≥ 0. This gives the ODE

y′(t) = −y(t) + t

Like many numerical solutions, it is much easier to verify a solution than to find it. Indeed, please verify
that this has solution y(t) = t − 1 + αe−t for any scalar α. In order for the solution to be unique, we
would require one additional piece of information to fix α. One such condition is y(0) = c which enforces
α = c+ 1. This type of specification is typically referred to as an initial value, or a trajectory.

For most of this chapter, we will only consider scalar ODE’s simply because of their simplicity.
However, it is entirely possible, and likely, that this is not the case in practice. For most systems of
ODE’s, they can be handled in a very similar manner as scalar ones.

Example 10.2. Consider a tiny ball of mass 1 attached at the end of a rigid, massless rod of length
r = 1. At the other end the rod’s position is fixed. Denote θ the angle between the pendulum and the
negative vertical axis. A simplified model of the motion of the pendulum is governed by

θ′′ = −g sin(θ)

where g = 9.81. We can write this ODE as a first order system. Let

y1(t) = θ(t), y2(t) = θ′(t)

Then y′1 = y2 and y′2 = −g sin(y1). This defines

y =

[
y1

y2

]
, f(t, y) =

[
y2

−g sin(y1)

]
, c =

[
θ(0)
θ′(0)

]

33

CHAPTER 10. DIFFERENTIAL EQUATIONS 34

We will use the simplest numerical method for approximately solving initial value ODE’s, Euler’s
method, to introduce necessary terminology and core fundamentals. In later sections, where applicable,
we will covered more advanced machinery as we build our theory. Consider searching for an approximate
solution via equidistant abscissae defined as t0 = a, ti = a + ih with h = b−a

N . Recall our forward
difference formula for approximating a derivative

y′(ti) =
y(ti+1)− y(ti)

h
− h

2
y′′(ξ)

From the differential equation, it follows that

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξ1)

Let us denote yi an approximate solution to y(ti). It then makes sense to approximate yi+1 via

yi+1 = yi + hf(ti, yi)

which is the celebrated forward Euler method. This simple method allows us to step through time and
compute an approximation based on the previous one. Note that the initial value is necessary to do so.
But who’s to stay that we can’t replicate such a method with the backward difference formula instead?
Indeed, using

y′(ti+1) =
y(ti+1)− y(ti)

h
− h

2
y′′(ξ2)

we arrive at
yi+1 = yi + hf(ti+1, yi+1)

At first glance, one may not have much an issue with this method. However, it belongs to the class of
implicit equations. That is, solving for yi+1, the unknown value, is not so easy anymore. The ease of
computing the forward Euler is due to it being an explicit formula, while backward Euler is an implicit
method. For now, it suffices to say that the implicit method has added an unnecessary headache. We
will further discuss implicit methods in sections to follow.

Example 10.3. This example will need to be showcased somewhere so lets take a look at it now.
Consider the differential equation y′ = λy, y(0) = 1 for some scalar λ. It can be verified that the true
solution is y = eλt. Applying forward Euler we obtain

yi+1 = yi + hf(ti, yi)

= yi + hλyi

= (1 + hλ)i+1y(0)

= (1 + hλ)i+1

We will show later that as h→ 0, this method converges to the true solution under a few assumptions.

1.2 Method Errors

There are two crucial types of errors for an approximation in this chapter. The first is the local truncation
error di which is the amount by which the exact solution fails to satisfy the difference equation. The
order of accuracy q is the smallest positive integer such that the local truncation error is O(hq). The
second is the global error ei, the amount an approximation differs from the true solution at a given point,
defined by

ei = y(ti)− yi
For example, by construction of the forward Euler method, we have

di =
y(ti+1)− y(ti)

h
− f(ti, y(ti)) =

h

2
y′′(ξ)

Thus, it is first order accurate with q = 1.

CHAPTER 10. DIFFERENTIAL EQUATIONS 35

We say that a method converges if the maximum global error tends to 0 as h tends to 0. Consider
the forward Euler global error. By subtracting

di =
y(ti+1)− y(ti)

h
− f(ti, y(ti))

0 =
yi+1 − yi

h
− f(ti, yi)

we obtain

di =
ei+1 − ei

h
− [f(ti, y(ti))− f(ti, yi)]

If y′′(t) is bounded by some M over [a, b] and f(t, y) is L-Lipschitz in y, then

ei+1 = ei + h[f(ti, y(ti))− f(ti, yi)] + hdi

≤ ei + hLei +
Mh

2

≤ · · · ≤ (1 + hL)i+1e0 +
Mh

2

i∑
j

(1− hL)j

=
Mh

2

i∑
j

(1− hL)j

which tends to 0 as h → 0. Thus, under some moderate conditions, the forward Euler method is
convergent.

1.3 Stability

We must make one last remark regarding stability before moving to more advanced methods. Consider
the test equation ODE introduced previously y′ = λy. When λ < 0 the solution e−|λ|t decays as t→∞.
Thus, it is reasonable to expect for any approximate solution yi+1, we should have

|yi+1| ≤ |yi|

Recall that for forward Euler applied to this ODE, we have

yi+1 = (1 + hλ)yi

Thus, in order for our seemingly harmless condition to hold, it must be that

h ≤ 2

λ

which is an awfully strict condition! Any ODE that requires more stringent conditions for stability than
for accuracy is called strict.

One should know by now that if the entire story of forward vs backward Euler methods were told in
the previous two sections, then we would have never bothered to introduce backward Euler in the first
place. Applying backward Euler to the test equation, this imposed constraint simplifies to

1

1− hλ
≤ 1

which holds for any h > 0, λ < 0. Indeed, the implicit nature of the backward Euler allows for a much
more flexible selection of h. Although the test equation may appear a bit arbitrary, this analysis is quite
fundamental for determining the stability of a method. We will explore more on stability later.

2 Runge-Kutta Methods

With both Euler methods being only first order accurate, there is a definite need for higher order meth-
ods. One such family is the Runge-Kutta (RK) methods. In short, consider integrating the differential
equation to obtain

y(ti+1) = y(ti) +

∫ ti+1

ti

f(t, y(t))dt

CHAPTER 10. DIFFERENTIAL EQUATIONS 36

RK methods are built around the idea of approximating the integral using some methods derived in
previous the previous chapter. For example, the implicit trapezoidal method gives

yi+1 = yi +
h

2
(f(ti, yi) + f(ti+1, yi+1))

Unfortunately, as an implicit method, this has some serious drawbacks (most notably being slow). We
can ”remedy” these issues by introducing the explicit trapezoidal method. It is obtained by, you guessed
it, approximating yi+1 on the right hand side of the implicit trapezoid method by an explicit method,
forward Euler. Thus

yi+1 = yi +
h

2
(f(ti, yi) + f(ti+1, yi + hf(ti, yi))

gives us an explicit (order 2) method. It should come as no surprise that the explicit trapezoid rule is
only conditionally stable, however1. We will quickly present the remaining RK methods based on our
favorite quadrature rules the midpoint and Simpson rules. For midpoint we have implicit midpoint given
by

yi+1 = yi + hf(ti+1/2, yi+1/2)

where ti+1/2 = 0.5(ti + ti+1) and yi+1/2 = 0.5(yi + yi+1), and its explicit counterpart

yi+1 = yi + hf(ti+1/2, yi +
h

2
f(ti, yi))

The RK method based on the Simpson rule is the most popular of the RK methods and even named
RK4. It is typically written as the explicit procedure

Y1 = yi

Y2 = yi +
h

2
f(ti, Y1)

Y3 = yi +
h

2
f(ti+1/2, Y2)

Y4 = yi +
h

2
f(ti+1/2, Y3)

yi+1 = yi +
h

6

(
f(ti, Y1) + 2f(ti+1/2, Y2) + 2f(ti+1/2, Y3) + f(ti+1, Y4)

)

1There is no free lunch.

Part III

8610 Notes

37

38

This part is a culmination of notes from Xue’s 8610 class and draw much comparison to Trefethen’s
Numerical Linear Algebra textbook. Similar to the 8600 part, the primary emphasis will be on motivation
and intuition with detailed analysis left to homeworks and practice questions. The first two chapters
were scribed while enrolled in the class and thus contain more detailed explanations/examples. However,
do not draw the wrong conclusion from the brevity of the final three chapters. They are fundamental to
numerical linear algebra and make up the bulk of the course.

Chapter 11

Conditioning and Stability

In this chapter, we turn to a systematic discussion of two fundamental issues of numerical analysis.
Conditioning is the perturbation behavior of a mathematical problem. It is, loosely speaking, the
sensitivity of the solution (output) to a mathematical problem with respect to the problem data (input).
It is an intrinsic property of a problem. Stability pertains to the perturbation behavior of an algorithm
used to solve that problem on a computer. Likewise, stability is the ability of an algorithm to produce
a ”reasonable” computed solution to a math problem under a small perturbation of input data. It is an
intrinsic property of an algorithm.

1 Conditioning of a Problem

Consider the mapping f : X → Y whereX,Y are normed vector spaces andX = {all valid input data}, Y =
{all possible solutions}. Assume f is continuous and typically differentiable.

Given a problem data point x, let y = f(x) be the corresponding solution. Now let the problem data
change from x to x + ∆x and the solution becomes f(x + ∆x). The absolute condition number of the
problem at x is

κa = lim
δ→0

sup
||∆x||≤δ

||f(x+ ∆x)− f(x)||
||∆x||

= sup
∆x

||f(x+ ∆x)− f(x)||
||∆x||

Likewise, the relative condition number is defined as

κr = lim
δ→0

sup
||∆x||≤δ

||x|| ||f(x+ ∆x)− f(x)||
||f(x)|| ||∆x||

= sup
∆x

||x|| ||f(x+ ∆x)− f(x)||
||f(x)|| ||∆x||

From now on, assume that both x and f(x) are vectors and ∂fi
∂xj

exist for all i, j. Then

f(x+ ∆x)− f(x) = Jf (x)∆x+O(∆x)2 ≈ Jf (x)∆x

In this instance, the absolute condition number is

κa = sup
∆x

∣∣∣∣Jf (x)∆x+O(∆x)2
∣∣∣∣

||∆x||
= sup

∆x

||Jf (x)∆x||
||∆x||

= ||Jf (x)||

Similarly, one can show that the corresponding relative condition number is

κr = sup
∆x

||Jf (x)|| ||x||
||f(x)||

Examples

Example 11.1. Let f(x) = αx.

κr =
|α| |x|
|αx|

= 1

So this function is well conditioned by any standard.

39

CHAPTER 11. CONDITIONING AND STABILITY 40

Example 11.2. Let f(x) =
√
x, n ∈ N+, x > 0).

κr =

∣∣ 1
nx

1/n−1
∣∣ |x|∣∣x1/n
∣∣ =

1

n
, but κa =

1

n

∣∣∣x1/n−1
∣∣∣

In this example, we see that the relative condition number is quite reasonable, but the absolute condi-
tioning of the function is quite poor when x << 1.

Example 11.3. Let f(x) = tan(x) and x = 1020. Then

κr =
sec2(x) |x|
|tan(x)|

=
1 + tan2(x)

|tan(x)|
|x| ≥ 2 |x| = 2 · 1020

which is a terrible relative error! Conversely, f(x) = tan−1(x) is perfectly conditioned.

Example 11.4. Let f(x) = x1 − x2. Then

κr =
||Jf (x)|| ||x||
||f(x)||

=
2 ·max(x1, x2)

|x1 − x2|

under the inf −norm since Jf (x) = [1,−1]. We see here that if x1 ≈ x2 and x1, x2 are not close to 0,
then the relative conditioning of the subtraction operation is very ill-conditioned.

Example 11.5. Let f(x) = Ax.

κr = ||A|| ||x||
||Ax||

If we assume A to be square and nonsingular, then

κr = ||A||
∣∣∣∣A−1Ax

∣∣∣∣
||Ax||

≤ ||A||
∣∣∣∣A−1

∣∣∣∣
Similarly, if we were to let f(x) = A−1x, κr ≤

∣∣∣∣A−1
∣∣∣∣ ||A||. That is to say, the sensitivity of solving

Ay = b for slightly perturbed y or b is bounded by the same condition number.

2 Conditioning of a System of Equations

A natural question extending from the previous section is how sensitive is f(x) = Ax to changes in the
coefficient matrix A? Let y be the solution to Ay = b for some fixed b ∈ Rn and y + ∆y be the solution
to a slightly perturbed problem (A+ ∆A)(y + ∆y) = b. From the latter, we have that

b = Ay + ∆Ay +A∆y + ∆A∆y ≈ Ay + +∆Ay +A∆y

since we can drop the double infinitesimal term in the limit. Now substituting Ay = b we have that
∆Ay = −A∆y or that ∆y = −A−1∆Ay. Taking norms and applying Cauchy-Schwarz provides us with
∆y ≤

∣∣∣∣A−1
∣∣∣∣ ||∆A|| ||y||. Thus,

κr = sup
∆A

||∆y|| / ||y||
||∆A|| / ||A||

≤
∣∣∣∣A−1

∣∣∣∣ ||A||
3 Conditioning of Eigenvalues of Matrices

Consider the matrix A =

[
1 1

ε
0 1

]
. It is not difficult to show that λ1 = λ2 = 1. However, through

a small perturbation we may represent the above as Â =

[
1 1

ε
ε 1

]
. In this case, we see that λ1 =

0, λ2 = 2, a significant difference. In general, for non-symmetric matrices, certain eigvenalues could
be very sensitive. Let λ be a simple eigenvalue of A and v and w be the corresponding right and left
eigenvectors. That is, Av = λv and wHA = λwH . Furthermore, set E to be a small perturbation of A

such that (A+E)(v + ∆v) = (λ+ ∆λ)(v + ∆v). Then, |∆λ| = ||E||2
cos∠(v,w) . In the symmetric case, v = w

in direction and therefore κa = 1.

CHAPTER 11. CONDITIONING AND STABILITY 41

4 Conditioning of Roots of a Polynomial

Recall from before that to interpolate a set of points using monomial basis is terrible as it requires the
solve of a dense n × n matrix that has high condition number. We will further reinforce the idea that
the monomial basis should very rarely be used.

Consider the solving x2 − 2x + 1 = 0. Clearly x1 = x2 = 0. Now, for the slightly perturbed problem
x2 − 2x + 1 − δ2, we have x1 = 1 − δ, x2 = 1 + δ in exact arithmetic. However, if δ <

√
ε, then the

roots become x1 = x2 = 1 as the original problem is unchanged in double precision (δ2 < εmach). Here,
a relative perturbation in one coefficient of magnitude O(δ2) produces a perturbation in the roots of

magnitude O(δ). So condition number of the roots are lim
δ→0

O(δ)
O(δ2) =∞.

In general, if a polynomial in the monomial basis has a repeated root of multiplicity m, then a pertur-
bation in absolute value in the polynomial coefficients of O(δm) is enough to warrant an error of O(δ)
in the roots.

Example 11.6. Let’s take a look at a more general example. Consider the Wilkinson Polynomial
p(x) = (x − 1)(x − 2) . . . (x − 23)(x − 24) = x24 + · · · + a1x + a0. How sensitive are the roots to
perturbations in coefficients? Consider p as a function of the coefficients and x. It follows by Taylor
expansion that

0 = p(xj + ∆xj ; a0, . . . , ai + ∆ai, . . . , a23)− p(xj ; a0, . . . , a23)

= p(xj ; a0, . . . , a23) +
∂P

∂xj
|(xj ;a0,...,a23) ∆xj +

∂P

∂ai
|(xj ;a0,...,a23) ∆ai − p(xj ; a0, . . . , a23)

Therefore,

∆xj = −
∂P
∂ai

∆ai
∂P
∂xj

= −
xij∆ai

p′(xj)

And the relative condition is consequently

κr = lim
∆ai→0

|∆xj/xj |
|∆ai/ai|

=
xi−1
j ai

p′(xj)

For instance, if i = j, then κr = 3.54·1015. That is, a perturbation of machine precision on this coefficient
makes it practically impossible to find the corresponding root!

5 Algorithm Stability

When solving a problem numerically, the conditioning of the problem is only half the battle. We also
need to ensure that our algorithm is stable. Let y = f(x) be the true solution and ŷ = f̂(x) be the
computed solution by some numerical algorithm.

We naturally would like
||f(x)−f̂(x)||
||f(x)|| to be small. An algorithm is called accurate if this can be achieved

for any valid input. However, if the problem is ill-conditioned, such an expectation is a bit ambitious. In
this case, a reasonable expectation is that the algorithm is stable. That is, for each input x, there exists
some ∆x such that ∣∣∣∣∣∣f̂(x)− f(x+ ∆x)

∣∣∣∣∣∣
||f(x+ ∆x)||

= O(εmach) and
||∆x||
||x||

= O(εmach)

The difference between the computed solution and the true solution is referred to as the forward error.
Another stronger type of stability is called backward stability. In backward stability, we require that the
computed solution is exactly the solution to a slightly perturbed problem. That is, f̂(x) = f(x + ∆x)

for some ∆x satisfying ||∆x||||x|| = O(εmach).

CHAPTER 11. CONDITIONING AND STABILITY 42

Example 11.7. Let’s look at an example of an algorithm that is not backward stable: Gaussian Elim-

ination/LU factorization without pivoting. Let A =

[
ε
2 −1
1 1

]
. Its LU factorization in exact arithmetic

is

A =

[
1 0
2
ε 1

] [
ε
2 −1
0 1 + 2

ε

]
However, when we perform the same task numerically, we obtain

Â =

[
1 0
2
ε 1

] [
ε
2 −1
0 2

ε

]
=

[
ε
2 −1
1 0

]
Therefore, ∆A = A− Â =⇒ ||∆A||∞

||A||∞
= 1

2 >> O(ε), i.e. the algorithm is not backward stable.

6 Stability of Linear Solvers

In this section, we will consider the stability of a few algorithms to solve systems of linear equations
(Ax = b). We will take a look at

1. Gaussian Elimination/LU factorization with partial pivoting

2. Cramer’s Rule

3. Compute A−1 then x = A−1b

4. QR factorization: x = A−1b = R−1Q−1b = R−1(QT b)

Let x̂ be the computed solution generated by these algorithms. We know that the forward error ||x̂−x||||x||
could be large if A is ill-conditioned. We will instead explore the backward error. We define the backward

error as the solution to min
∆A

||∆A||
||A|| s.t. (A + ∆A)x̂ = b. Our question now is how can we solve such a

problem?

Theorem 11.1. Let r = b−Ax̂ be the residual of the computed solution. Then

min
∆A

||∆A||2
||A||2

=
||r||2

||A||2 ||x̂||2
To complete the proof, we will need to make use of the following lemma.

Lemma 11.1. Let u, v ∈ Rn. Then
∣∣∣∣uvT ∣∣∣∣

2
= ||u||2 ||v||2.

Proof. Let u, v ∈ Rn. To prove the lemma, first set ũ, ṽ to be unit vectors in the direction of u, v
respectively, i.e. ũ ||u||2 = u, ṽ ||v||2 = v. Set U, V to be orthonormal basis extensions of u, v. Denote E

to be the zero n × n matrix with a 1 in the first entry. Then ũṽT = Ã = UEV T . Scaling up to A, we
see that ||u||2 ||v||2 is the only nontrivial singular value of A. Thus, it must be the 2-norm.

Proof of Theorem 11.1. Let r = b− Ax̂. From (A+ ∆A)x̂ = b, we get simplify to r = ∆Ax̂. Therefore,
||r||2 = ||b−Ax̂||2 ≤ ||∆A||2 ||x̂||2. It directly follows that

||r||2
||A||2 ||x̂||2

≤
||∆A||2
||A||2

To achieve equality, consider the 1 rank matrix ∆A = rx̂T

x̂T x̂
. By the lemma,

||∆A||2 =
||r||2 ||x̂||2
||x̂||22

=
||r||2
||x̂||2

And so the relative backward error is

||∆A||2
||A||2

=
||r||2

||A||2 ||x̂||2
which completes our proof.

CHAPTER 11. CONDITIONING AND STABILITY 43

Example 11.8. Recall the previously mentioned algorithms. Let A be the Hilbert matrix of order 10.

Set x = [1, . . . , 1]T , b = Ax. We now solve for x̂ using the above algorithms and compute min
∆A

||∆A||2
||A||2

.

The results are summarized in the table below

Algorithm Relative Backward Error Relative Forward Error

GEPP/LUPP 10−16 3.3× 10−4

Cramer’s Rule 10−6 5.7× 10−4

A−1b 10−5 10−3

QR Factorization 10−16 1.2× 10−3

Clearly, Cramer’s Rule and solving via inverses are not backward stable. However, these two methods
appear to perform decently well in terms of forward error. We say that all of these algorithms are forward
stable. A loose definition of forward stability is an algorithm is forward stable if it produces a forward
error similar to that of the forward error produced by a backward stable algorithm!

7 Conditioning of GE/LU factorization

Continuing with our stability exploration of linear solvers, let A be a nonsingular square matrix of order
n and assume that no zero pivot arises during factorization in exact arithmetic such that A = LU .
Then for sufficiently small εmach, the factorization can also be completed successfully in floating point
arithmetic. Furthermore, let L̂ and Û be the computed factors of LU decomposition. Then, it can be
shown that

L̂Û = Â = A+ ∆A

where ∆A satisfies ||∆A||
||L̂||||hU || = O(ε). Similarly, let |A| be the matrix obtained by component-wise

absolute value operation. It can be shown that

|∆A| ≤ nεmach

1− nεmach
·
∣∣∣L̂∣∣∣ ∣∣∣Û ∣∣∣

holds component-wise. Furthermore, suppose these factors were used in the forward/backward substitu-
tions of solving Ax = b. Then x̂ satisfies

(A+ ∆A)x̂ = b where |∆A| ≤ 3nεmach

1−3nεmach

∣∣∣L̂∣∣∣ ∣∣∣Û ∣∣∣
Thus, for backwards stability of both factorizing A and solving Ax = b, we need

||∆A||
||A||

= O(ε) or |∆A| ≤ O(ε) |A|

Therefore, the stability is dependent on whether or not we have
∣∣∣∣∣∣L̂∣∣∣∣∣∣ ∣∣∣∣∣∣Û ∣∣∣∣∣∣ ≤ Cn ||A|| or

∣∣∣L̂∣∣∣ ∣∣∣Û ∣∣∣ ≤ Cn |A|.
Note that this is equivalent to Cn ’not being too large’ because combining the above yields

|∆A|
|A|

≤ nεmach

1− nεmach
Cn

To explore how large Cn would be, let A(k) be the intermediate matrix during factorization. Define

ρn :=
max

∣∣∣a(k)
ij

∣∣∣
max |aij |

Example 11.9. Let’s look at an example for computing ρn. Consider the factorization

A =

[
ε −1
1 1

]
−→

[
ε −1
1
ε

1
ε + 1

]
after one pivot. Thus,

L =

[
1 0
1
ε 1

]
, U =

[
ε −1
0 1

ε + 1

]
It follows that ρn ≤ 1 + 1

ε = O(1
ε) which is very bad.

CHAPTER 11. CONDITIONING AND STABILITY 44

In general, we have the following result (that we present without proof) for LU factorization without
pivoting.

|||L| |U |||∞ ≤ [1 + 2(n2 − n)ρn] ||A||∞
If ρn is small, |L| |U | will also be small. For sufficiently small L̂, Û satisfy a similar relation. Therefore,
the magnitude of ρn determines the backwards stability of GE/LU. To achieve backwards stability, how-
ever, we must use pivoting to control ρn. At the very least, we need to ensure ρn depends on n only. To
accomplish this, we use partial pivoting.

Let PA = LU be the exact LU factorization of A with partial pivoting. Then, the computed factors

satisfy L̂Û = P̂A+ ∆A where ||∆A||||A|| = O(ρnεmach) and ρn ≤ 2n−1. In general, if GEPP is used to solve

Ax = b, then the computed solution satisfies

(A+ ∆A)x̂ = b where ||∆A||∞ ≤
3n2ρnεmach

1− 3nεmach
||A||∞

While this may look promising at first, note that ρn ≤ 2n−1 is in many ways unacceptable. As n
grows large, even partial pivoting cannot guarantee backward stability. However, in practice, this up-
per bound is far from attained. In fact, only for very constructed examples does the growth factor ever
reach unacceptable levels. With this in mind, we instead say that GEPP is backwards stable for a fixed n.

The above paragraph is not to say that all matrices suffer this unfortunate fate. We conclude this
section by reiterating the idea that matrices with special structure (SPD, row/diagonal dominance) do
not require pivoting at all to be backwards stable.

Chapter 12

QR Factorization

We begin the next chapter with a look into one of (if not the) most important concepts in all of numerical
linear algebra: QR factorization.

1 Properties of QR

Given a matrix A ∈ Rm×n(m ≥ n), the reduced QR factorization produces Q1 ∈ Rm×n (same size as
A) and R1 ∈ Rn×n (upper triangular) such that A = Q1R1 where Q1 has orthonormal columns (i.e.
QT1 Q1 = In).

Furthermore, we can also compute a full QR factorization of the form A =
[
Q1 Q2

] [R1

0

]
where

[
Q1 Q2

]T [
Q1 Q2

]
= Im

QT1 Q1 = In

QT2 Q2 = Im−n

QT1 Q2 = On×(m−n)

Let A = QR be a reduce QR factorization of A. Multiplying each on the right by ek, we obtain the kth
columns. Thus, we have

ak = Aek = QRek =

k∑
i=1

qirik

That is, the columns of A can be written as a linear combination of those in Q. Does the reverse direction
hold? Theorem 12.1 sheds light on this topic.

Theorem 12.1. Let A = QR be a reduced QR factorization of A. If A has full column rank, then
rjj 6= 0 for all j and consequently R is nonsingular. Therefore, AR−1 = Q, i.e. the columns of Q can be
written as linear combinations of of those in A.

Proof. Assume for the sake of contradiction that rkk = 0 for some 1 ≤ k ≤ n. Then R is singular. Thus
the column space of QR cannot be n, contradicting the fact that A has linearly independent columns.

In general, if A is of rank k and the first l ≤ k columns of A are linearly independent, but the (l + 1)st
column is a linear combinations of the first l columns of A, then the top left submatrix of R is nonsingular,
but rl+1,l+1 = 0. Thus, ql+1 cannot be written as a linear combination of A1, . . . Al+1.

Proof. For a proof, consider the proof of Theorem 12.1 restricted to only the first l columns.

45

CHAPTER 12. QR FACTORIZATION 46

2 QR Factorization via Gram-Schmidt

We will now consider methods in which we can compute the QR factorization. Directly enforcing the
requirements of A = QR, we can derive A1 = r11Q1 =⇒ q1 = A1/r11. Continuing in this manner, we

can write the k step as Qk =
Ak −

∑k
i=1Qirik
rkk

. This is in fact just the Gram-Schmidt algorithm applied

to the columns of A. The steps of this Gram-Schmidt Process are summarized in the Algorithm 12.1. A

Algorithm 12.1 Classical Gram-Schmidt

for k = 1, . . . , n do
for i < k do
rik = QTi Ak

end for
Ãk = Ak −

∑k−1
i=1 Qirik

|rkk| =
∣∣∣∣∣∣Ãk∣∣∣∣∣∣

2

Qk = Ãkrkk
end for

few remarks about the algorithm,

1. Notice that we set the modulus of |rkk|, but not the vector itself. That is, the QR factorization is
unique up to scaling by a complex number with modulus 1.

2. Recall that if A does not have full column rank, then we will have some rjj = 0. To continue
in this case, we may choose any unit vector u 6∈ span{Q1, . . . , Qj−1} and orthogonalize it against
{Q1, . . . , Qj−1}.

This process is referred to as the Classical Gram-Schmidt algorithm. It is wildly unstable in practice.
Because of this, we from now on use Modified Gram-Schmidt detailed in Algorithm 12.2. For Modified

Algorithm 12.2 Modified Gram-Schmidt

for k = 1, . . . , n do
Qi = Ai

end for
for k = 1, . . . , n do
rkk = ||Qk||2
Qk = Qk/rkk
for j = k + 1, . . . , n do
rkj = QTkQj
Qj = Qj − rkjQk

end for
end for

GS, we have the following result ∣∣∣∣QTQ− In∣∣∣∣ = O(κ2(A)εmach)

From this result, we see that we may not be able to guarantee that the columns of our output are
orthogonal, the most important property of GS. It is for this reason that common practice is to simply
perform GS twice for reliable orthogonality.

CHAPTER 12. QR FACTORIZATION 47

GS Computational Cost

We will now turn our attention to the computation cost of QR factorization via Gram-Schmidt. Recall
that at step k of Gram-Schmidt, we compute the following

Ãk = Ak −
k−1∑
i=1

Qj(Q
T
j Ak)

Ak = Ãk/
∣∣∣∣∣∣Ãk∣∣∣∣∣∣

The computational cost of such is

[m+ (m− 1) +m+m](k − 1) + 3m

Thus, for all k, we have

cost =

n∑
k=1

[4m− 1](k − 1) + 3m

= (4m− 1)(
(n− 1)(n)

2
) + 3mn

≈ 2mn2

And again, for increased reliability, we perform this operation twice.

3 QR Factorization via Orthogonal Transformations

The recommended approach for QR factorization is by orthogonal transformations, i.e. Householder
transformations and Givens rotations. We will begin with Householder. While our task may be motivated
by QR, let us first consider a slightly simpler problem: given a vector x, project x onto the space spanned
by e1. Define v = x− ||x||2 e1 and note that

x− 2 projv(x) = x− v = ||x||2 e1

where projv(x) = vT x
vT v

v. Substituting this into the previous gives

x− 2v
vTx

vT v
= (I − 2

vvT

vT v
)x = ||x||2 e1

The matrix H(x) = (I− vvT

vT v
)x is called the Householder reflector. H(x) has many useful properties such

as

1. Symmetry. HT = H,H∗ = H

2. Involutory. H2 = I − 4 vv
T

vT v
+ 4 vv

T

vT v
= I

3. Orthogonal. HTH = H2 = I

Property (3) is perhaps the most important of the Householder reflector. Orthogonality plays a major
role in both QR factorization and SVD decomposition. A few nice consequences of orthogonality of a
matrix Q are

• Multiplication by Q does not affect norm. ||Qv||2 = (Qv)TQv = vTQTQv = vT v = ||v||2

• Eigenvalues have modulus 1. For an eigenvalue/eigenvector pair λ, v, ||v|| = ||Qv|| = ||λv|| =
λ ||v|| =⇒ |λ| = 1

• Perfect conditioning. κ2(Q) = largest eigenvalue
smallest eigenvalue = 1

CHAPTER 12. QR FACTORIZATION 48

With the help of Householder transformations, we can compute QR factorizations. Recall that H(x)x =
||x||2 e1. Let A ∈ Rm×n be a fully dense matrix with m > n. Then applying H(A1)A eliminates the
lower triangular portion of the first column, i.e.

A =

x x x
...

...
...

x x x

 Q1=H(A1)A→

x x x
0 x x
...

...
...

0 x x

We then apply Householder again to the first column of the first principle minor of the transformed

matrix. We now have Q2 =

[
I1 O1×n

On×1 H([On×1In])

]
and

A =

x x x
0 x x
0 x x
...

...
...

0 x x

Q2→

x x x
0 x x
0 0 x
...

...
...

0 0 x

We may continue in this fashion until we have transformed A into an upper triangular matrix R. Since
AQ1Q2 . . . Qn = R, R is the finished product of our transformations of A and Q is the orthogonal matrix
QnQn−1 . . . Q1.

In addition to the derivation of Householder reflectors, we must also consider the practical side of using
Householder transformations to compute QR factors. Below we list some of the more computational
ideas associated with the algorithm.

• When applying the Householder reflectors, the Householder reflector should never be explicitly
formed, e.g.

HU = (I − 2
vvT

vT v
)U = U − v(

2

vT v
(vTU))

• Note that QnQn−1 . . . Q1A =

[
R
0

]
=⇒ A = Q1 . . . Qn

[
R
0

]
. Denoting Q to be the product of the

individual Qi factors, we see that A = Q

[
R
0

]
= [QLQR]

[
R
0

]
= QLR. Thus, for a reduced QR

factorization, we only need to compute QL! Observe that

A = Q

[
R
0

]
= Q

[
I
0

]
Therefore, to explicitly compute QL, simply apply Qn, . . . Q1 to the left of In.

• In many problems, such as linear least squares, explicit computation of QL is not necessary! Con-
sider solving min ||b−Ax||2 by QR factorization where A is full rank. We have previous seen that
either x = (ATA)−1AT b or x = R−1QT b would suffice. However, the later in Householder reduces
to x = R−1([In0n×(m−n)]Qn . . . Q1b). Thus, there is no need to explicitly form QL either.

Householder Computational Cost

As always, it is essential to know the computational cost of an algorithm. Algorithm 12.3 showcases
some pseudocode of the process. We can enumerate the flops necessary for each steps as in the table
below

Step Flops Required

||xk||2 2(m− k + 1)
||xk||2 1
||xk||2 − xk (m− k + 1)
vk/ ||vk||2 3(m− k + 1)
2vTk A(k : m, j) 2(m− k + 1) + 1)
A(k : m, j)− vk(2vTk A(k : m, j) 2(m− k + 1) + 1)

CHAPTER 12. QR FACTORIZATION 49

where the latter two steps are done n− k times. In total, this is roughly

n∑
k=1

{6(m− k + 1) + 1 + [4(m− k + 1) + 1](n− k)} ≈
n∑
k=1

4(m− k + 1) + 1](n− k)

= 4(m− n+ 1)

n∑
k=1

n− k + 4

n∑
k=1

(n− k)2

= 4(m− n+ 1)
(n− 1)n

2
+ 4

(n− 1)n(2n− 1)

6

≈ 2mn2 − 2

3
n3

A few comments must be made here

• This is only for the R factor. We still need to do additional work to get our Q factor.

• In certain problems, like Linear Least Squares mentioned above, we can avoid doing this work.

• Note that when m = n, the cost of solving Linear Least Squares using QR factorization via
Householder transformations costs 4

3n
3 as opposed to 2

3n
3 for GEPP.

• Modified GSQR is even worse since it requires 2mn2 flops.

Algorithm 12.3 Householder Transformation Phase 1

v =zeros(m,n)
for k = 1, . . . , n do
xk = A(k : m, k);
vk = ||xk||2 e1 − xk;
vk = vk/ ||vk||2
A(k : m, k) = ||xk||2 e1

A(k : m, k + 1 : n) = A(k : m, k + 1 : n)− vk2(vTk (A(k : m, k + 1 : n)))
end for

Lastly, for QR factorization via Householder reflections, we have Theorem 12.2 regarding the stability of
Householder presented without proof.

Theorem 12.2. Let Q̂, R̂ be the computed factors of A by Householder such that Q̂R̂ = Â = A + ∆A.

Then, ||∆A||||A|| = O(εmach) and
∣∣∣∣∣∣Q̂T Q̂− In∣∣∣∣∣∣ = O(εmach).

4 QR Factorization via Given’s Rotation

Although Householder transformations are the defacto method of performing QR factorization, there

is occasionally a more efficient method, Given’s rotation. For a given vector

[
a
b

]
∈ R2, define G =[

c s
−s c

]
, c = a√

a2+b2
, s = b√

a2+b2
. As a result, G

[
a
b

]
=

[
ca+ sb
−sa+ cb

]
=

[√
a2 + b2

0

]
. If a = b = 0, G = I2.

It is easy to see that GTG = I. Thus, this is an orthogonal transformation.

5 Given’s Rotation Computational Cost

We can use this transformation to compute a QR factorization. We simply need to apply the Given’s
Rotation to all nonzero entries of the lower triangular part of A.

Step Flops Required

Construction of Given’s Transformation 6

G

[
a
b

]
multiplication 6

Apply G to a row 6 + 6(n− 1)
Apply G to entire matrix (6 + 6(n− 1))(m− 1)

CHAPTER 12. QR FACTORIZATION 50

Thus, summing over all columns, we get a total cost of

6

n−2∑
k=1

(n− k)(m− k − 1) = 6

n−2∑
k=0

(n− k)[(n− k)(m− n− 1)]

= 6

n−2∑
k=0

(n− k)2 + 6(m− n− 1)

n−2∑
k=0

n− k

= 6

(
n(n+ 1)(2n+ 1)

6
− 1

)
+ 6(m− n− 1)

(n+ 2)(n− 1)

2

≈ 2n3 + 3(m− n)n2

= 3mn2 − n3

flops. Compare this with Householder transformations. It is roughly 50% worse! However, consider the
case when A is upper Hessenberg. It can be shown that only 3n2 flops are needed. Similarly, if A is
tridiagonal, we only need roughly 14n flops for (phase 1) QR factorization. That is, Given’s rotation
actually outperforms Householder transformations matrices with special structures.

Chapter 13

Singular Value Decomposition

Like QR factorizations, singular value decompositions play an important role in numerical linear algebra.
A very natural and reliable way of solving virtually any numerical linear algebra problem is simply by
asking: what if we take the SVD?

1 SVD Review

Assume that A ∈ Rm×n with m ≥ n. Then a singular value decomposition (SVD) of A is A = UΣV T

where U ∈ Rm×m, Σ ∈ Rm×n, V ∈ Rn×n, U and V are orthogonal matrices, σi ≥ 0. We can rewrite this

as A =
[
UL UR

] [Σ
0

]
V T = ULΣV T to obtain a reduced SVD.

Theorem 13.1. Every matrix A ∈ Rm×n has a full SV D and the singular values are uniquely determined
by A itself.

Proof. If A is the zero matrix, then the result is trivially satisfied with identities. If A 6= 0, then

||A|| > 0. Let v1 ∈ Rn, ||v1||2 = 1 be such that ||Av1|| = ||Av1||
||v1|| = ||A||. Define σ1 := ||A|| >

0 and u1 = 1
σ1
Av1. It follows that ||u1|| = 1. Now suppose that V2 ∈ Rn×(n−1), U ∈ Rm×(m−1)

be such that
[
v1 V2

]
,
[
u1 U1

]
are orthogonal matrices. Consider A1 =

[
u1 U2

]T
A
[
v1 V2

]
=[

uT1 Av1 uT1 Av2

V T2 Av1 UT2 Av2

]
=

[
σ1 0
0 B

]
. Inducting on B gives the full SVD.

The SVD has a few nice properties.

1. rank(A) = number of non-zero singular values.

2. Assume rank(A) = r ≤ n. Then range(A) = span(u1, . . . , ur) and null(A) = span(vr+1, . . . , vn).

3. ||A|| = σ1, ||A||F =
√
σ2

1 + · · ·+ σ2
r .

4. λi(A
TA) = σ2

i (A).

5. If A = AT , then |λi| = σi.

6. |detA| =
∣∣detUΣV T

∣∣ = |detU | |det Σ|
∣∣detV T

∣∣ =
∏
σi.

1.1 Low Rank Approximations

For a rank r matrix A, we have that

A =
[
u1, . . . , ur

]
Σ

v
T
r
...
vTn

Assume with loss of generality that σ1 ≥ σ2 ≥ · · · ≥ σr and define Ak =

∑k
i=1 σiuiv

T
i where k ≤ r. Then

we the following theorem characterizes low rank approximations of A.

51

CHAPTER 13. SINGULAR VALUE DECOMPOSITION 52

Theorem 13.2. Ak is the best rank k approximation to A in the 2-norm, i.e.

||A−Ak||2 = inf
B∈Rm×n

||A−B||2 = σk+1

Proof. Suppose for the sake of contradiction that there exists some B of rank k such that ||A−B||2 <
||A−Ak||2 = σk+1. Then B has a n− k dimensional null space W and so for any w ∈W , it follows that

||Aw|| = ||Aw −Bw|| = ||(A−B)w|| < ||w||σk+1

Now consider the space V ′ spanned by the first k + 1 right singular vectors of A. For any v ∈ V ′,

||Av|| ≥ σk+1 ||v||

Since the sum of these dimensions is greater than n, there must be some nonzero element in both, a
contradiction. Thus, Ak is the minimizer that we seek.

2 Computing an SVD

The last topic for this short chapter is an incomplete one. We have previously discussed many ways to
utilize an SVD, but no methods of computing such a form. The reason for this is simple: it is difficult
to do well.

2.1 Naive Idea

Indeed, one could note that for a matrix A with SVD A = UΣV T ,

ATA = V Σ2V ′

That is, the singular values of A are the square roots of the eigenvalues of ATA. Then this problem is
reduced to an eigenvalue decomposition (which will be covered in depth). Unfortunately, such a method
fails to be stable. A backward stable algorithm for computing singular values would obtain σ̂k satisfying

σ̂k = σk(A+ δA),
||δA||
||A||

= O(εmach)

which, combined with previous perturbation analysis |σk(A+ δA)− σ(A)| ≤ ||δA||2 gives

|σ̂k − σk| = O(εmach ||A||)

Now finding λk(ATA) in the same fashion gives∣∣∣λ̂k − λk∣∣∣ = O(εmach

∣∣∣∣ATA∣∣∣∣) = O(εmach ||A||2)

Taking square roots gives
|σ̂k − σk| = O(εmach ||A||2 /σk)

which is noticeably worse by a factor of ||A|| /σk. That is, algorithms aside, computing eigenvalues of
ATA to give singular values of A is a bad idea.

However, all hope is not lost. Consider the matrix H =

[
0 HT

H 0

]
. Since A = UΣV T implies

AV = UΣ and ATU = V Σ, we have[
0 HT

H 0

] [
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]
which is an eigenvalue decomposition of H. Thus, the singular values of A are the absolute value of the
eigenvalues of H. Please convince yourself that this method is more stable. Unfortunately, the matrix H
is a square matrix of dimension m+n. When m >> n, this is not very troubling, but still a consideration.
The standard SVD algorithims are based around this approach, but never form such matrix explicitly.

CHAPTER 13. SINGULAR VALUE DECOMPOSITION 53

2.2 Golub-Kahan Bidiagonalization

The algorithm by Golub-Kahan arrives at an SVD through two steps aptly named Phase 1 and Phase 2.
Phase 1 attempts to reduce the matrix into a bidiagonal form through orthogonal transformations while
Phase 2 takes the bidiagonal matrix into a diagonal one through an iterative process (also via orthogonal
transformations). The Phase 2 operation is very finicky and is not covered.

The Phase 1 procedure, however, is not difficult to understand at all. We seek to transform a m× n
matrix A into bidiagonal form. Since an SVD is of the form A = UΣV T , we have the freedom of
letting the orthogonal operations perform on the left and right of A be different. That is to say, we can
continuously apply distinct Householder transformations to the left and right of A to zero out columns
and rows. Applied to a 4× 3 matrix, this looks like

A =

x x x
x x x
x x x
x x x

 UT
1 ·→

x x x
0 x x
0 x x
0 x x

 ·V1→

x x 0
0 x x
0 x x
0 x x

 UT
2 ·→

x x 0
0 x x
0 0 x
0 0 x

 UT
3 ·→

x x 0
0 x x
0 0 x
0 0 0

At the end, we will have applied n = 3 reflectors on the left and n − 2 = 1 reflectors on the right. The
total cost is effectively twice that of QR factorization since the process is just two QR schemes applied
to A and AT . Thus, the total cost is roughly 4mn2 − 4

3n
3.

Part IV

Exercises

54

Appendix A

8600 Exercises

1 Scientific Computing Fundamentals

1.1 Numerical Algorithms

1. Ascher and Greif problem 1.4. Assess the conditioning of the problem of evaluating

g(x) = tanh(cx) =
exp(cx)− exp(−cx)

exp(cx) + exp(−cx)

near x = 0 as the positive parameter c grows.

Solution. Approach 1 of 2. Let |x| << 1 and x̄ = 0 be a small perturbation of x. Clearly,
g(x̄) = 0. Consider g(x)− g(x̄). It follows that

g(x)− g(x̄) = g(x) ≈ cx− (cx)3

3

via the Taylor expansion of g(x) about x = 0. Since |x| << 1,

cx− (cx)3

3
≈ cx = c(x− x̄)

That is, the absolute condition number is linearly dependent on c. Thus, as c grows large, this
evaluation becomes ill-conditioned.

Approach 2 of 2. We can directly evaluate |g′(0)| = |4c|
4 = c > 0 at x = 0 (which matches

our analysis from before). The relative condition number is

lim
x→0

xg′(x)

g(x)
= c · lim

x→0

x

g(x)
= c

1

g′(0)
= 1

which completes our analysis.

2. Ascher and Greif problem 1.5. Consider evaluating the integral

yn =

∫ 1

0

xn

x+ 10
dx

(a) Derive a formula for approximately computing these integrals based on evaluating yn−1 given
yn.

Solution. Solving the previous equation for yn−1 gives

yn−1 =
1

10

(
1

n
− yn

)

55

APPENDIX A. 8600 EXERCISES 56

(b) Show that for any given value ε > 0 and positive integer n0, there exists an integer n1 ≥ n0

such that for taking yn1
= 0 as a starting value will produce integral evaluations yn with

absolute error smaller than ε for all 0 < n ≤ n0.

Solution. Fix ε > 0 and let n0 ∈ N. Denote the absolute error |yn − ŷn| as ξn. We can
compute that

ξn−1 = − 1

10
ξn

That is,

ξn0
= ξn1

(
1

10

)n1−n0

and we can fix n1 accordingly.

(c) Argue that your algorithm is stable.

Solution. The algorithm is clearly stable as the absolute error decreases in each iteration.

1.2 Roundoff Errors

1. Ascher and Greif problem 2.10. The function f1(x, δ) = cos(x+δ)−cos(x) can be transformed
into another form f2(x, δ) using the trigonometric formula

cos(φ)− cos(ψ) = −2 sin(
φ+ ψ

2
) sin(

φ− ψ
2

)

(a) Show that, analytically, f1(x, δ)/δ and f2(x, δ)/δ are effective approximations for − sin(x) for
δ sufficiently small.

Solution. Using the Taylor expansion of cos(x+ δ) at x, we see that

f1(x, δ)/δ = (− sin(x)) +O(δ)

So for small δ, f1(x, δ)/δ ≈ − sin(x)

(b) Derive f2(xδ).

Solution. Using the formula given, we compute

f2(x, δ) = −2sin(
2x+ δ

2
sin(

δ

2
)

(c) When computing both f1 and f2, one notices they are not as similar as ”analytically equal”
would imply. Explain the difference.

Solution. There is an associated error in the evaluation of f1 that is not evident in f2. The
first function must compute the difference of two values close in modulus, cos(x + δ) and
cos(x). Since subtraction is an ill-conditioned problem, this introduces large relative error.
However, f2 circumvents this issue by computing x+ δ − x = δ in exact arithmetic.

2. Ascher and Greif problem 2.13. Consider the linear system[
a b
b a

] [
x
y

]
=

[
1
0

]
with a, b > 0

(a) If a ≈ b, what is the numerical difficulty in solving this system?

Solution. It is not difficult to see that x = a
a2−b2 and y = − b

a2−b2 . When a ≈ b, these

computations produce large relative (and absolute) errors since a2 ≈ b2.

(b) Suggest a numerically stable formula for computer z = x+ y given a and b.

Solution. The trap solution is to simply compute x and y and add them together. However,
as discussed above, both x and y will have large errors associated with them and so will z. A
better solution is to note that in exact arithmetic

z =
a

a2 − b2
− b

a2 − b2
=

1

a+ b

which is a much less error-prone operation. Big idea: when dealing with roundoff errors, try
to handle the troubled operations in exact arithmetic as much as possible.

APPENDIX A. 8600 EXERCISES 57

1.3 Nonlinear Equations of One Variable

1. Ascher and Greif problem 3.1. Apply the bisection routine to find the root of the function

f(x) =
√
x− 1.1

starting from interval [0, 1] with tolerance equal to 1e− 8.

(a) How many iterations are required?

Solution. At least n = 27 are required to converge within the tolerance. This is obtained
from n = dlog(b−a2·tol)e.

(b) What is the resulting absolute error? Could this absolute error be predicted by our convergence
analysis?

Solution. The absolute error is 8.94 · 10−10. We could have clearly predicted that it would
be below 1e− 8, otherwise we would not have stopped.

2. Ascher and Greif problem 3.3. Consider the fixed point iteration xk+1 = g(xk) and let all the
assumptions of the fixed point theorem hold. Use a Taylor’s series expansion to show that the order
of convergence depends on how many of the derivatives of g vanish at x = x∗. User your result to
state how fast (at least) a fixed point iteration is expected to converge if g′(x∗) = · · · = g(r)(x∗) = 0
where the integer r ≥ 1 is given.

Solution. Consider the absolute error of the fixed point iteration above ek = |xk − x∗|. It follows
that

ek+1 = |xk+1 − x∗| = |g(xk)− g(x∗)|

because x∗ is our fixed point. Expanding g(xk) using a Taylor series gives us

ek+1 =

∣∣∣∣−g(x∗) + g(x∗) + g′(x∗)(xk − x∗) +
g′′(x∗)

2!
(xk − x∗)2 + . . .

g(r+1)(η)

(r + 1)!
(xk − x∗)r

∣∣∣∣
Then, if g′(x∗) = · · · = g(r)(x∗) = 0, we obtain

ek+1 =
g(r+1)(η)ek

r+1

(r + 1)!

In general, if the first r derivatives of g at x∗ are 0, then the rate of convergence is r + 1. This is
precisely why Newton’s Method has quadratic convergence.

3. Ascher and Greif problem 3.4. Consider the function g(x) = x2 + 3
16 .

(a) This function has two fixed points. What are they?

Solution. Solving x = x2 + 3
16 yields x = {1/4, 3/4}.

(b) Consider the fixed point iteration xk+1 = g(xk) for this g. For which of the points you have
found in (a) can you be sure that the iterations will converge to that fixed point? Briefly
justify your answer. You may assume that the intial guess is sufficiently close to the fixed
point.

Solution. Evaluating g′(x) = 2x at x1, x2 gives us

g′(x1) = 0.5

g′(x2) = 1.5

Since g′(x1) < 1 and g([a, b]) ⊂ [a, b], we know that if g is a contraction, then the fixed point
iteration will converge to x1 for sufficiently close x0. However, since g′(x2) > 1, fixed point
iteration may not necessarily converge.

(c) For the point or points you found in (b), roughly how many iterations will be required to
reduce the convergence error by a factor of 10?

APPENDIX A. 8600 EXERCISES 58

Solution. Since g′(x1) = 0.5, the convergence rate will be exactly the same as bisection.
That is, it will take at least 4 iterations to reduce it by a factor of 10. This could be manually
done by computing −1

log10 0.5

4. Ascher and Greif problem 3.7. Consider Steffensen’s method

xk+1 = xk −
f(xk)

g(xk)

where

g(x) =
f(x+ f(x))− f(x)

f(x)

(a) Show that in general, the method converges quadratically to a root of f(x).

Proof. Let F (x) = x − f(x)2

f(x+f(x))−f(x) . Then Steffensen’s method is simply the fixed point

iteration with g = F . From question 3.3, we know that if F ′(x∗) = 0, then Steffensen’s
method will converge quadratically. Thus, it suffices to show that F ′(x∗) = 0.

Via Taylor expansion, we can write f(x+f(x)) = f(x)+f ′(x)f(x)+ f ′′(η)
2 f(x)2. Now consider

F (x) = x− f(x)

f ′(x) + f ′′(η)
2 f(x)

Through elementary operations, we can reformulate this to be

F (x)− F (x∗) = x− x∗ − f(x)− f(x∗)

f ′(x) + f ′′(η)
2 f(x)

F (x)− F (x∗)

x− x∗
= 1− f(x)− f(x∗)

x− x∗
· 1

f ′(x) + f ′′(η)
2 f(x)

Now, letting x→ x∗ gives

F ′(x∗) = 1− f ′(x∗)

f ′(x∗)
= 0

which was our intent to show.

(b) Compare the method’s efficiency to the efficiency of the secant method.

Solution. First and foremost, the secant method has superlinear convergence whereas Stef-
fensen’s is quadratic. Furthermore, the secant method requires computation of f(xk) and
f(xk−1) (and thus storage of previous values). Steffensen’s requires both f(xk) and f(xk +
f(xk)) so roughly twice as many function evaluations. Steffensen’s method is effectively re-
placing the secant approximation of the gradient with a more accurate one as we approach
the root at the cost of doubling the function evaluations.

2 Numerical Systems Analysis

2.1 Direct Methods for Linear Systems

1. Question from Dr. Xue. Let A =

2 1 1 4
−3 −1 3 2
−5 −1 2 5
4 2 3 1

 and b =

4
3
8
1

.

(a) Solve the linear system Ax = b by Gaussian elemination without pivoting.

Solution.

APPENDIX A. 8600 EXERCISES 59

Begin with

2 1 1 4 | 4
−3 −1 3 2 | 3
−5 −1 2 5 | 8
4 2 3 1 | 1

 7→

2 1 1 4 | 4
0 0.5 4.5 8 | 9
0 1.5 4.5 15 | 18
0 0 1 −7 | −7

 7→

2 0 −8 −12 | −14
0 0.5 4.5 8 | 9
0 0 1 1 | 1
0 0 1 −7 | −7

7→

2 0 0 −4 | −6
0 0.5 0 −3.5 | −4.5
0 0 1 1 | 1
0 0 0 1 | 1

 7→

2 0 0 0 | −2
0 0.5 0 0 | 1
0 0 1 0 | 0
0 0 0 1 | 1

And therefore x = [−1, 2, 0, 1]T .

(b) Find the LU factorization without pivoting, then solve Ax = b by two triangular solves.

Solution. Now using LU factorization,
2 1 1 4
−3 1 3 2
−5 −1 2 5
4 2 3 1

 7→

2 1 1 4
0 0.5 4.5 8
0 1.5 4.5 1
0 0 1 −7

 7→

2 1 1 4
0 0.5 4.5 8
0 0 −9 −9
0 0 1 −7

 7→

2 1 1 4
0 0.5 4.5 8
0 0 −9 −9
0 0 0 −8

 = U

And

L =

1 0 0 0
−1.5 1 0 0
−2.5 3 1 0

2 0 −1/9 1

Back solving for Ly = b gives y = [4, 9,−9,−8]T and consequently Ux = y yields x =
[−1, 2, 0, 1]T which is consistent with part (a).

2. Question from Dr. Xue.

(a) Show that the diagonal elements of SPD matrix must be positive

Solution. Let A be a SPD n× n matrix and x = ek where 1 ≤ k ≤ n. Then the argument

akk = eTkAek = xTAx ≥ 0

shows that akk ≥ 0 for all k. That is, the diagonal elements of symmetric positive definite
matrix must be positive.

(b) Why are the elements in the L factor uniformly bounded without using pivoting?

Solution. The calculation of ljj for the Cholesky factorization is as follows

ljj =

(
ajj =

j−1∑
k=1

l2jk

)1/2

We can rearrange this to be
j∑

k=1

l2jk = ajj

for all j, k. Therefore,
ljk ≤ max

j

√
ajj

So the coefficients of L are uniformly bounded.

(c) Evaluate the arithmetic cost of Cholesky factorization of a full SPD matrix.

APPENDIX A. 8600 EXERCISES 60

Solution. The arithmetic cost of Cholesky factorization can be broken into two parts: the
diagonal and the off-diagonal elements. Each diagonal clearly takes 2(j − 1) + 1 operations,
while off diagonal elements require [2(j − 1) + 1](n− j) operations for a row of L. This sum
can be simplified as follows

n∑
j=1

2(j − 1) + 1 + [2(j − 1) + 1](n− j) =

n∑
j=1

(2j − 1)(1 + n− j)

= 2

n∑
j=1

j(n+ 1− j)−
n∑
j=1

(n+ 1− j)

=
(2n+ 1)(n)(n+ 1)

6
+
n(n+ 1)

2
− n(n+ 1)

2

=
(2n+ 1)(n)(n+ 1)

6

After some tedious algebra (indeed, I skipped a few steps here for brevity).

3. Ascher and Greif Problem 5.22. Given that a and b are two real positive numbers, the
eigenvalues of the symmetric tridiagonal matrix are λj = a+ 2b cos(πj

n+1), j = 1, . . . , n.

(a) Find ||A||∞
Solution. Since the matrix A is tridiagonal, every row has the same sum except rows 1 and
n. The sum on rows 1 and n are a+ b and all other rows have sum a+ 2b. Because a, b > 0,
we conclude that ||A||∞ = a+ 2b.

(b) Show that if A is strictly diagonally dominant, then it is symmetric positive definite.

Solution. We know that for each j = 1, . . . , n, λj = a+ 2b cos(πj
n+1). Under the assumption

that A is strictly diagonally dominant, we have a > 2b. Since |cos(x)| ≤ 1, it follows that
λj = a+ 2b cos(πj

n+1) > 0. Since A is also clearly symmetric, A is symmetric positive definite.

(c) Suppose a > 0 and b > 0 are such that A is symmetric positive definite. Find the condition
number κ2(A).

Solution. For a symmetric positive definite matrix, we know that

κ2(A) =
maxλi
minλi

=
a+ 2b cos(π

n+1)

a+ 2b cos(nπ
n+1)

Letting n→∞, we see that the numerator evaluates to a+2b and the denominator to a−2b in
the limiting sense. Thus, under the assumption of symmetric positive definite, for sufficiently
large n,

κ2(A) ≈ a+ 2b

a− 2b

2.2 Linear Least Squares Problems

1. Ascher and Greif Problem 6.5.

(a) Why can’t one directly extend the LU decomposition to a long and skinny matrix in order to
solve the least squares problem?

Solution. We can certainly extend LU factorization to non-square matrices. That is, for an
m×n matrix A, we can write it of the form LU = A where L is an m×n unit lower triangular
matrix and U is an n × n upper triangular matrix. However, this decomposition does us no
good. Substituting in place of A for the normal equations gives us

UTLTLUx = UTLT b

In this manner, we cannot utilize the triangularity of our matrices to arrive at a solution any
faster. However, it is perfectly acceptable to use LU factorization to solve Bx = y where

APPENDIX A. 8600 EXERCISES 61

B = ATA and y = AT b. In fact, that is precisely what the algorithm does, only using the
Cholesky factorization which is simply a special case of LU factorization on symmetric positive
definite matrices.

(b) When writing

x = (ATA)−1AT b = (RTQTQR)−1RTQT b = (RTR)−1RTQT b = R−1QT b

we have somehow moved from the conditioning κ(A)2 to κ(A). Where does such a change
take place?

Solution. The improvement is based on the fact that R has the same conditioning as A.
That is, in the final step, solving Rx = QT b is the same conditioning as Ax = b. We will
show that the singular values of R and A are the same. We can prove this straight from the
pseudo-inverse form of the condition number. First note that

A† = (ATA)−1AT = (RTR)−1(RTQT) = R−1Q

Then by definition
κ(A) = ||A||

∣∣∣∣A−1
∣∣∣∣ = ||QR||

∣∣∣∣R−1Q
∣∣∣∣

Since Q is orthogonal and multiplication by it does not change the norm,

κ(A) = ||QR||
∣∣∣∣R−1Q

∣∣∣∣ = ||R||
∣∣∣∣R−1

∣∣∣∣ = κ(R)

Additionally, we could show that A and R have the same singular values by showing they have
a near-equivalent SVD decomposition. The last step in the equation shown above achieves
this system by reducing R−1R in exact arithmetic.

2. Ascher and Greif Problem 6.6(b). Let Q be m × n with orthonormal columns such that
A = QR. Show that the diagonal elements of R all satisfy rii 6= 0 for i = 1, . . . , n if and only if A
has full column rank for this economy size decomposition.

Solution. Since Q is orthogonal, it follows that QTA = R. We know that Q has full rank so
the singularity of R depends directly on the column rank of A. We conclude by noting that R is
singular if and only if there exists rii = 0 for some i.

3 Numerical Approximation

3.1 Polynomial Approximation

1. Ascher and Greif Problem 10.4(a). Given n+1 data pairs {xi, yi}ni=0, define for j = 0, 1, . . . , n
the functions ρj =

∏
i6=j xj − xi and let also φ(x) =

∏n
i=0 x− xi. Show that

ρj = φ′(xj)

Solution. The product rule gives us φ′(x) =

n∑
j=0

n∏
i=0,i6=j

x− xi with φ′(xj) =

n∏
i=0,i6=j

xj − xi = ρj .

2. Ascher and Greif Problem 10.6. Given the four data points (−1, 1), (0, 1), (1, 2), (2, 0), deter-
mine the interpolating cubic polynomial using the monomial, Lagrange, and Newton basis. Show
that each representation gives the same polynomial.

Solution. Using Matlab, it is quite easy to compute the closed form expression of these three
representations. In the monomial basis,

pM (x) = −2

3
x3 +

1

2
x2 +

7

6
x+ 1

For Lagrange we have

pL(x) = −1

6
x(x− 1)(x− 2) +

1

2
(x+ 1)(x− 1)(x− 2)− (x+ 1)(x)(x− 2)

APPENDIX A. 8600 EXERCISES 62

And finally, using Newton’s basis

pN (x) = −2

3
(x+ 1)(x)(x− 1) +

1

2
(x+ 1)x+ 1

We should expect them to be the same, and the fact that two of them share a leading coefficient
at a quick glance should reassure this thought.
Again, using Matlab, one could quickly evaluate that (in a slight abuse of notation)

pM ([−1, 0, 1, 2]) = [1, 1, 2, 0]

pL([−1, 0, 1, 2]) = [1, 1, 2, 0]

pN ([−1, 0, 1, 2]) = [1, 1, 2, 0]

And since the degree 3 polynomials all coincide at 4 different points, they must be the same
polynomial. If this feels a little off, that’s because we constructed the polynomials to agree at these
four points, so of course they would be the same.

3. Ascher and Greif Problem 10.7. For Newton basis, prove that ck = f [x0, x1, . . . , xk] satisfies
the recursion formula stated in the notes.

Solution. Let pk, p
′
k be polynomials that interpolate f at x0, . . . , xk and x1, . . . , xk+1 respectively.

We claim that we can write the polynomial interpolating x0, . . . , xk+1, denoted pk+1, as

pk+1 =
(x− x0)p′k + (xk+1 − x)pk

xk+1 − x0

Indeed, for j = 0,

pk+1(x0) =
(x0 − x0)p′k+1(x0) + (xk+1 − x0)f(x0)

xk+1 − x0
= f(x0)

and for 1 < j < k,

pk+1(xj) =
(xj − x0)f(xj) + (xk+1 − xj)f(xj)

xk+1 − x0
= f(xj)

and for j = k + 1

pk+1(xk+1) =
(xk+1 − x0)f(xk+1) + (xk+1 − xk+1)f(xj)

xk+1 − x0
= f(xk+1)

So pk+1 is the unique interpolating polynomial of f(x) at x0, . . . , xk+1, and its leading coefficient
is precisely f [x0, x1, . . . , xk+1]. Note from the definition of pk+1, we see that its leading coefficient

is the leading coefficient of
p′k−pk
xk+1−x0

. That is,

f [x0, . . . , xk+1] =
f [x1, . . . , xk+1]− f [x0, . . . , xk]

xk+1 − x0

4. Ascher and Greif Problem 10.13. Let (x̂0, . . . , x̂k) be a permutation of the abscissae (x0, . . . , xk).
Show that

f [x̂0, . . . , x̂k)] = f [x0, . . . , xk]

Solution. Let x̂0, . . . , x̂k be a permutation of x0, . . . , xk. Interpolate at x0, . . . , xk and call the
interpolating polynomial pk(x). Note that no matter which permutation of our abscissa points we
use, the interpolating polynomial is the same. Thus, we can write it as

pk(x) =

k∑
i=0

f [x0, . . . , xi]φi(x) =

k∑
i=0

f [x̂0, . . . , x̂i]φ̂i(x)

Differentiating each expression k times leaves us with only the leading coefficient. That is,

p(k)
n (x) = f [x0, . . . , xk] = f [x̂0, . . . , x̂k]

APPENDIX A. 8600 EXERCISES 63

5. Question from Dr. Xue. Show that the Lagrange basis polynomials satisfy
∑n
i=0 Li(x) ≡ 1 for

all x.

Solution. Let f(x) = 1 and pn(x) be its degree n interpolation. Using the Lagrange basis func-
tions, we get that

pn(x) =

n∑
i=0

1 · Li(x)

However, f(x) is a polynomial of degree 0 < n that (clearly) interpolates these points as well, and
we know that all interpolating polynomials of degree less than or equal to n are unique. That is,

f(x) =

n∑
i=0

Li(x)

Another way to see this is noting by the polynomial interpolation error, we have that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi) = 0

So f(x) ≡ pn(x). Indeed, these two methods are essentially saying the same thing. That is, if f is
a degree n polynomial, its degree k interpolation is itself if k ≥ n.

3.2 Piecewise Polynomial Interpolation

1. Ascher and Greif Problem 11.3. Let f ∈ C3[a, b] be given at equidistant points xi = a+ ih, i =
0, 1, . . . , n where nh = b− a. Assume further that f ′(a) is given as well.

(a) Construct an algorithm for a C1 piecewise quadratic interpolation of the given values. Thus,
the interpolating function is written as

v(x) = si(x) = ai + bi(x− xi) + ci(x− xi)2, xi ≤ x ≤ xi+1

for i = 0, 1, . . . , n−1 and your job is to specify an algorithm for determining the 3n coefficients.

Solution. Proceed as follows for each i

i. Set ai = f(xi)

ii. Set bi = bi−1 + 2hci−1 if i > 0 or b0 = f ′(a) otherwise

iii. Set ci = f(xi+1)−f(xi)−hbi−1−2h2ci−1

h2

(b) How accurate do you expect this approximation to be as a function of h? Justify.

Solution. The error will be of order 3 with respect to h. In fact, the error is bounded above
by the error of a degree 2 interpolating polynomial. That is,

Err(x) = |f(x)− p(x)| ≤ f ′′′(ξ)

3!
max

x∈[ti−1,ti]
(x− ti−1)(x− ti)2

The maximization problem on the right is achieved at x = 1
3 (2ti−1 + ti), which still results in

an order of 3 with respect to h when substituting this back in.

2. Ascher and Greif Problem 11.5. Derive the matrix problem for cubic spline interpolation with
the not-a-knot condition. Show that the matrix is tridiagonal and strictly diagonally dominant.

Solution. Assume for the sake of simplicity that hi = h for all i1. To solve for the cubic spline
coefficients, we need to solve the following system for the ci’s

hci−1 + 2hci + hci+1 = 3(f [xi, xi+1]− f [xi−1, xi])

c2 − c1
h

=
c1 − c0
h

cn − cn−1

h
=
cn−1 − cn−2

h
1The general case is just messier

APPENDIX A. 8600 EXERCISES 64

which corresponds to the following tridiagonal, strictly diagonally dominant matrix problem after
elimination

1 2 −1 0

h 2h h
...

... h 2h h
...

...
. . .

. . .
. . .

...
... h 2h h
0 −1 2 1

c0
c1
...
...

cn−1

cn

=

0
ψ1

...

...
ψn−1

0

where ψi = 3(f [xi, xi+1]− f [xi−1, xi]).

3.3 Numerical Differentiation

1. Ascher and Greif Problem 14.7. Show that

f ′(x0) ≈
f(x0 + h)− f(x0 − h

2)

h+ h
2

decreases linearly and not faster.

Solution. Let

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +O(h3)f(x0 −

h

2
) = f(x0)− h

2
f ′(x0) +

h2

8
f ′′(x0) +O(h3)

be the two relevant Taylor expansions. By subtracting the two and solving for f ′(x0), note that
the second order error expressions do not cancel. That is,

f ′(x0) =
f(x0 + h)− f(x0 − h

2)
3
2h

+O
(
h2

h

)
Thus, the order is first order accurate only.

3.4 Numerical Integration

1. Question from Dr. Xue. Assume that a quadrature rule has both positive and negative weights,
denoted by wk with k ∈ S+ ⊂ {0, 1, . . . , n} and k ⊂ S− = {0, 1, . . . , n}\S+ respectively. Suppose
that the largest positive and negative (in absolute value) weights both to infinity as n → ∞. For
any given δ > 0 (small) and M > 0 (large), show that there exists n and f, g ∈ C[a, b] with
||f − g||∞ ≤ δ such that |Q(f)−Q(g)| ≥M .

Solution. Let ε > 0, f(x) ≡ 1, Q be a quadrature rule satisfying the problem statement, and
δ > 0. Denote k+ and k− the indices corresponding to the largest and smallest weights of Q. Define
g(x) ≡ f(x),∀x ∈ [a, b]\ ((xk+ − ε, xk+ + ε) ∩ (xk− − ε, xk− + ε)). For x ∈ (xk+ − ε, xk+ + ε), let
g(x) be the piecewise function passing through the points (xk+ − ε, 1), (xk+ , 1 + δ) and (xk+ + ε, 1)
and likewise for the interval (xk− − ε, xk− + ε) Clearly, ||f − g||∞ = δ. But

|Q(f)−Q(g)| =

∣∣∣∣∣
n∑
k=0

(f(xk)− g(xk))wk

∣∣∣∣∣ = δ(wk+ − wk−)

as ε → 0. Since wk+ → ∞ and wk− → −∞ as n → ∞, we can choose n large enough s.t.
Q(f)−Q(g) ≥M for any M ∈ R.

2. Question from Dr. Xue. Show that the weights of the Gauss quadrature are all positive.

APPENDIX A. 8600 EXERCISES 65

Solution. Let f(x) = L2
k(x) where Lk(x) is the kth Lagrange interpolant through the roots of

the Legendre polynomials x0, . . . , xn. Specifically, Lk(xk) = 1, Lk(xi) = 0, i 6= k. Since f(x) is of
degree 2n < 2n+ 1, the Gauss quadrature is exact. That is,∫ b

a

L2
k(x)dx =

∑
j

wjL
2
k(xj) = wk

However, since L2
k(x) ≥ 0, wk ≥ 0 for any arbitrary k which is what we wanted to show.

3. Question from Dr. Xue.

(a) Use the 2nd order Taylor expansion at a+b
2 to show that the error of the midpoint rule is

(b−a)3

24 f ′′(η) for some η ∈ (a, b).

Solution. We begin by expanding f(x) at x = a+b
2 .

f(x) = f(
a+ b

2
) + f ′(

a+ b

2
)(x− a+ b

2
) +

f ′′(c)

2
(x− a+ b

2
)2

for some c ∈ (a, b). Then the computation below follows∫ b

a

f(x)dx−Q(f) =

∫ b

a

f(
a+ b

2
) + f ′(

a+ b

2
)(x− a+ b

2
) +

f ′′(c)

2
(x− a+ b

2
)2dx− (b− a)f(

a+ b

2
)

=

∫ b

a

f ′(
a+ b

2
)(x− a+ b

2
) +

f ′′(c)

2
(x− a+ b

2
)2dx

=

∫ b

a

f ′′(c)

2
(x− a+ b

2
)2dx

=
f ′′(c)(b− a)3

24

which proves the result.

(b) Let p1(x) be the linaer interpolant of f(x) at x0 = a and x1 = b. Use the error f(x)− p1(x)

to show that the error of the trapezoidal rule is − (b−a)3

12 f ′′(η).

Solution. Per the problem, let p1(x) be the linear interpolant of f(x) at x0 = a, x1 = b.
Then we directly have that∫ b

a

f(x)dx−Q(f) =

∫ b

a

f(x)dx− b− a
2

[f(a) + f(b)]

=

∫ b

a

f(x)− p1(x)dx

=

∫ b

a

f
′′(c)

2
(x− a)(x− b)dx

=
−(b− a)3

12
f ′′(c)

where we used that f(x)− p1(x) = f ′′(c)
2 (x− a)(x− b) for some c ∈ (a, b).

Question from Dr. Xue. Derive Simpson’s rule by hand.

Solution. For a Newton Cote’s rule with 3 nodes, we know that Q(f) =
∑2
k=0 f(xk)

∫ b
a
Lk(x)dx

where xk = {a, a+b
2 , b}. By direct computation, we have

L0 =
(x− a+b

2)(x− b)
(a− a+b

2)(a− b)

L1 =
(x− a)(x− b)

(a+b
2 − a)(a+b

2 − b)

APPENDIX A. 8600 EXERCISES 66

And then

w0 =

∫ b

a

L0(x)dx =
b− a

6

w1 =

∫ b

a

L1(x)dx = 4
(b− a)

6

w2 =

∫ b

a

L2(x)dx =
b− a

6

where w2 follows by symmetry.

4. Question from Dr. Xue. Derive the 3-point Gauss-Legendre quadrature for
∫ 1

−1
f(x)dx and the

2-point Gauss-Chebyshev quadrature for
∫ 1

−1
f(x)√
1−x2

dx.

Solution. For our Gauss-Legendre quadrature, we can use our recurrence relation to obtain the
Legendre polynomials. That is, set φ0(x) = 1, φ1(x) = x and recursively define

φj+1 =
2j + 1

j + 1
x · φj(x)− 1

j + 1
· φj−1(x)

This set up gives us the polynomials

φ2(x) =
3

2
x2 − 1

2

φ3(x) =
5

2
x3 − 3

2
x

The latter has roots x = {0,±
√

3/5} which become our nodes xi. We can then generate the
Lagrange polynomials via these roots to obtain

L0 =
(x− 0)(x−

√
3/5)

(−
√

3/5− 0)(−2
√

3/5)

L1 =
−(x2 − 3/5)5

3

Again, because of the symmetry of [−1, 1], we need not compute L2. Integrating each of these over
[−1, 1] gives us

w0 =
5

9

w1 =
8

9
w2 = w0

Thus, our quadrature rule is

Q(f) =
5

9
f(−

√
3/5) +

8

9
f(0) +

5

9
f(
√

3/5)

Our Gauss-Chebyshev quadrature is not as easy. To find its nodes, we set w(x) = 1√
1−x2

and find

the orthogonal polynomials with respect to inner product 〈f, g〉 =
∫ 1

−1
f(x)g(x)w(x)dx. Through

not difficult, but tedious, Gram-Schmidt computation on {1, x, x2}, we arrive at

φ2(x) = x2 − 1/2

APPENDIX A. 8600 EXERCISES 67

This gives us nodes x = {−1/
√

2, 1/
√

2} 2. Luckily, our weight function is also symmetric so we
simply need to solve for w0 and we are done. A few more computations show us that∫ 1

−1

x− 1/
√

2

−2/
√

2
w(x)dx =

π

2

Thus, w0 = w1 = π
2 and our Gauss-Chebyshev quadrature is

Q(f) =
π

2
[f(−1/

√
2) + f(1/

√
2)]

5. Ascher and Greif Problem 15.9. Derive and use a 2-node weighted Gauss quadrature to

integrate
∫ 1

0
ex√
x
dx.

Solution. This problem is not too much different than the previous Gauss-Chebyshev one. For
this reason, I will not delineate my steps as well and will just provide computer-aided values. We
begin by defining the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)w(x)dx

where w(x) = 1√
x

. We can then use Gram-Schmidt again on {1, x, x2} to arrive at the following

set of orthogonal set of polynomials w.r.t 〈·, ·〉

φ0(x) = 1

φ1(x) = x− 1

3

φ2(x) = x2 − 6

7
x+

3

35

The roots of φ2(x) are computed numerically to be x = {0.115587, 0.741557}. This leads to the
following Lagrange polynomials

L0(x) =
x− x1

x0 − x1

L1(x) =
x− x0

x1 − x0

In this case, the weight function is not symmetric about [0, 1] so we must compute each weight
individually. Doing so results in

w0 =

∫ 1

0

L0(x)dx = 1.3043

w1 =

∫ 1

0

L1(x)dx = 0.6957

Indeed, computing the quadrature of ex√
x

using the rule defined by x0, x1, w0, w1 gives

If =

∫ 1

0

ex√
x
dx ≈ w0x0 + w1x1 = 2.924539758

which has 3 correct decimal digits at only 2 function evaluations.

2If one were a bit smarter than me, one could reason that the nodes of this quadrature must be the Chebyshev points
for n = 1 in advance. Unfortunately, I had to find out the hard way

Appendix B

8610 Exercises

1 Numerical Linear Algebra Fundamentals

1. Trefethen and Bau Problem 2.1. Show that if a matrix A is both triangular and unitary,
then it is diagonal.

Solution. Suppose A is upper (lower) triangular. Then, A−1 is also upper (lower) triangular.
This can be shown through elementary row reductions on A. Since A is unitary, we conclude that
A−1 = AT is upper (lower) triangular. This is only possible if A is diagonal.

2. Trefethen and Bau Problem 2.2. The Pythagorean theorem asserts that for a set of n orthog-
onal vectors {xi}, ∣∣∣∣∣

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
∣∣∣∣∣
2

=

n∑
i=1

||xi||2

(a) Prove this in the case n = 2.

Solution. We can directly compute

||x+ y||2 = ||x||2 + ||y||+ 2〈y, x〉.

Since 〈y, x〉 = 0, by orthogonality, the result follows immediately.

(b) Prove the general case.

Solution. The previous question provides us a base case for an induction argument. Assume
the statement holds for n− 1. Then it follows that

||(x1 + x2 + · · ·+ xn−1) + xn||2 = ||xn||2 + ||(x1 + · · ·+ xn−1)||2

= ||xn||2 + ||x1||2 + · · ·+ ||xn−1||2

by the induction hypothesis.

3. Trefethen and Bau Problem 2.3. Let A ∈ Cm×m be hermitian.

(a) Prove that all eigenvalues of A are real.

Solution. Let (λ, x) be an eigenvalue/eigenvector pair. Then

λ̄x∗x = (Ax)∗x

= x∗A∗x

= x∗Ax

= λx∗x.

Hence, λ = λ̄ and λ must be real.

68

APPENDIX B. 8610 EXERCISES 69

(b) Prove that if x and y are eigenvectors corresponding to distinct eigenvalues, then x and y are
orthogonal.

Solution. Notice that for eigenvectors x, y corresponding to eigenvalues λ1 6= λ2, we have
the following

λ̄1λ2〈y, x〉 = x∗A∗Ay = λ2x
∗Ay = λ2

2〈y, x〉

from which we conclude that either 〈y, x〉 = 0, or λ1 = λ̄1 = λ2. Here we used the fact that
each eigenvalue of A is real proved previously. The latter case implies λ1 = λ2 which we
assumed to be false. Thus, 〈y, x〉 = 0.

4. Trefethen and Bau Problem 2.4. What can said about the eigenvalues of a unitary matrix?

Solution. Let (λ, x) be an eigenvalue/eigenvector pair of a unitary matrix A. Then

x = A∗Ax

λA∗x

λλ̄x

the adjoint operation preserves eigenvectors, but conjugates eigenvalues. Thus, the modulus of
eigenvalues of a unitary matrix are either 0 or 1.

5. Trefethen and Bau Problem 2.5. Let S ∈ Cm×m be skew-hermitian.

(a) Show that the eigenvalues of S are purely imaginary.

Solution. Follow the previous argument for hermitian matrices.

(b) Show that I − S is nonsingular.

Solution. Suppose I − S were singular. Then there exists some x such that Sx = x. That
is, 1 is an eigenvalue of S. We previously showed that all eigenvalues are purely imaginary,
thus I − S must be nonsingular.

(c) Show that the matrix Q = (I − S)−1(I + S) is unitary.

Solution. We simply need to verify the adjoint is the inverse. We compute

(I − S)−1(I + S)((I − S)−1(I + S))∗ = (I − S)−1(I + S)(I + S)∗(I − S)−∗

= (I − S)−1(I + S)(I − S)(I + S)−1

= (I − S)−1(I − S2)(I + S)−1

= (I − S)−1(I − S)(I + S)(I + S)−1

= I

to conclude the result.

6. Trefethen and Bau Problem 2.6. Show that if A = I +uv∗ is nonsingular, then its inverse has
the form I + αuv∗ for vectors u, v ∈ Cm.

Solution. We can directly compute

(I + uv∗)(I + αuv∗) = I + (α+ 1)uv∗ + αu(v∗u)v∗

= I + (α+ 1 + αv∗u)uv∗.

It is clear that we choose α such that

α+ 1 + αv∗u = 0⇔ α = −1/(1 + v∗u)

for v∗u 6= −1, then A−1 = I + αuv∗. If v∗u = −1, then note that

Au = Iu+ uv∗u = u− u = 0.

Hence, A is singular and span(u) ∈ null(A). Since uv∗ is rank-one, dim(null(A)) = 1 and so
span(u) = null(A).

APPENDIX B. 8610 EXERCISES 70

7. Trefethen and Bau Problem 3.1. Prove that if W is an arbitary nonsingular matrix, the
function ||·||W := ||Wx|| is a vector norm.

Solution. Let α ∈ R and x, y ∈ Cm. We verify the following

||αx||W = ||Wxα|| = |α| ||Wx|| = |α| ||x||W
||x+ y||W = ||W (x+ y)|| ≤ ||Wx||+ ||Wy|| = ||x||W + ||y||W
||x||W = ||Wx|| ≥ 0

and note that if ||Wx|| = 0, then Wx = 0 and x = 0 by nonsingularity of W .

8. Trefethen and Bau Problem 3.2. Let ||·|| be any norm. Show that ρ(A) ≤ ||A|| where ρ(A) is
the spectral radius of A and denotes the largest eigenvector of A.

Solution. Let (λ, v) be an eigenvalue/eigenvector pair of A. Noting Ax = λx, by taking norms,
we have that

|λ| ||x|| = ||Ax|| ≤ ||A|| ||x|| .

Dividing by ||x||, we conclude that |λ| ≤ ||A|| for any eigenvalue λ. Thus, ρ(A) ≤ ||A||.

9. Trefethen and Bau Problem 3.4. Let B be a submatrix of a m × n matrix A that is a µ × ν
matrix obtained by selecting selecting certain rows and columns of A. Show that ||B||p ≤ ||A||p
for any 1 ≤ p ≤ ∞.

Solution. Let {ci} be the set of indices that correspond to the selected rows of A in B and similarly
let {di} be the indices of the the columns selected. Let U be a µ×m matrix such that for every i
the cthi column of U is ei, the standard basis vector in Rµ. Let V be the matrix representing this
procedure for the set {di}. Then UAV = B. Both U and V have norm 1 for any p-norm, thus
||B||p = ||UAV ||p ≤ ||A||p

10. Trefethen and Bau Problem 3.5. Prove or disprove: For E = uv∗, ||E||F = ||u||F ||v||F .

Solution. True. It is easy to see that

||E||2F = tr((uv∗)∗(uv∗))

= tr(v∗u∗uv)

= tr(||u||22 ||v||
2
2)

= ||u||22 ||v||
2
2

= ||u||2F ||v||
2
F .

Taking square root concludes the result.

11. Trefethen and Bau Problem 4.2. Suppose A is an m × n matrix and B is the n ×m matrix
obtained by rotating A 90 degrees clockwise on paper. Do A and B have the same singular values?

Solution. Note that B and AT have the same columns but in a different order. Thus, BP = AT

for some permuation matrix P . Since any permutation matrix is orthogonal, B and AT have the
same singular values and consequently so do B and A.

12. Trefethen and Bau Problem 4.4. Two matrices A,B ∈ Cm×m are unitarily equivalent if
A = QBQ∗. Prove or disprove: A and B are unitarily equivalent if and only if they have the same
singular values.

Solution. True. Let A,B be unitarily equivalent matrices and A = UΣV ∗ be an SVD of A.
Then B = Q∗AQ = Q∗UΣV ∗Q is a valid SVD for B. Thus, A and B have the same singular
values. For the converse, assume A and B have the same singular values. Then let A = U1ΣV ∗1
and B = U2ΣV ∗2 be two valid SVDS for A and B respectively. By rearrangement, it follows that
U1U

∗
2BV2V

∗
1 = A and thus A and B are unitarily equivalent.

APPENDIX B. 8610 EXERCISES 71

13. Trefethen and Bau Problem 5.2. Show that the set of full-rank matrices is a dense subset of
Cm×m.

Solution. Let A ∈ Cm×m and let A = UΣV ∗ be a (reduced) SVD of A. Denote Ak = U(Σ+ 1
k I)V ∗.

Since

lim
k→∞

||A−Ak||2 = lim
k→∞

∣∣∣∣∣∣∣∣UΣV ∗ − U(Σ +
1

k
I)V ∗

∣∣∣∣∣∣∣∣
2

= lim
k→∞

1

k
= 0,

{Ak} → A as k →∞. Thus, the set of full rank matrices is a dense subset of Cm×m.

14. Trefethen and Bau Problem 5.4. Suppose A has SVD A = UΣV ∗. Find an eigendecomposition

of

[
0 A∗

A 0

]
.

Solution. [
0 A∗

A 0

] [
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]

2 Conditioning and Stability

1. Question from Dr. Xue

(a) Find the absolute and relative condition numbers of f(x) = e−2x and f(x) = ln3(x). For what
values of x are these functions sensitive to perturbations?

Solution. For f(x) = e−2x,

κA = ||Jf (x)|| =
∣∣2e−2x

∣∣
κr =

||Jf (x)|| |x|
|e−2x|

= 2 |x|

That is, the absolute condition number is never sensitive since e−2x is bounded above by 1.
The relative condition number is only sensitive when x gets really large. When f(x) = ln3(x),
we have

κA =
3 ln2(x)

|x|

κr =
κA |x|

|ln(x)| ln2(x)
=

3

ln(x)

The absolute condition number becomes large as x→ 0+. The relative conditioning behaves
in a similar manner when x→ 1. Both are incredibly sensitive to perturbations around their
respective critical values.

(b) Let x1, x2 ∈ R+ and f(x1, x2) = xx2
1 . Find the relative condition number of f(x), and for

what range of values of x1 and x2 is this problem ill-conditioned?

Solution. Let f(x1, x2) = xx2
1 . Then

κr =
||Jf (x)||∞ ||x||∞

||f(x)||
=

max{xx2−1
1 x2, x

x2−1
1 x1 log x2}max{x1, x2}∣∣xx2−1

1

∣∣ |x1|

=
max{x2, x1 log x2}max{x1, x2}

|x1|

From this construction we see that if x1 log x2 > x2, then our relative condition number is
simply log x2 max{x1, x2}. This is only ill-conditioned when both x1 and x2 are very (very)

large. However, if x1 log x2 < x2, then our relative condition number is
x2
2

x1
which can clearly

grow very fast when x1 → 0 or x2 →∞.

APPENDIX B. 8610 EXERCISES 72

Figure B.1: Sequence xk

2. Question from Dr. Xue. Consider the recurrence xk = 111 −
1130− 3000

xk−1

xk
who general solution

is xk = 100k+1a+6k+1b+5k+1c
100ka+6kb+5kc

, where a, b and c depend on the initial values. Given x0 = 11
2 and

x1 = 61
11 , we have a = 0, b = c = 1.

(a) Show that this gives a monotonically increasing sequence to 6.

Solution. Consider a rescaling by a factor of 6k for a fixed k. Then

6k+1 + 5k+1

6k + 5k
=

6 + 5(5
6)k

1 + (5
6)k

It follows that

lim
k→∞

6k+1 + 5k+1

6k + 5k
= lim
k→∞

6 + 5(5
6)k

1 + (5
6)k

= 6

For monotonicity, note that as a function of k, f(k) = 6k+1+5k+1

6k+5k has a derivative of f ′(k) =
30k log(6

5)

(6k+5k)2
which is positive for all nonnegative values of k.

(b) Implement this recurrence on MATLAB, plot {xk}, compare with the exact solution. What
is the condition number of the limit of this particular sequence as a function of x0 and x1?

Solution. The conditioning of the sequence as a function of x0 and x1 is infinity. For any
perturbation of size ε > 0 on the inputs x0, x1, we see that the limit jumps from 6 to 100
(since a becomes nonzero). That is, 100−6

ε → ∞ as ε → 0. We see this behavior in Figure
B.1. After only a few iterations, the sequence shoots to 100. The general solution avoids this
problem by setting a = 0 in exact arithmetic.

3. Question from Dr. Xue. Let p24(x) = (x − 1)(x − 2) · · · (x − 24) = a0 + a1x + · · · + a24x
24.

Evaluate the relative condition number of the k-th root xk = k subject to the perturbation of
ak for k = 16, 17, 18, 19, 20 and find the root that is most sensitive to the perturbation of the
corresponding coefficient. Use MATLAB to compute the roots and compare them to the true
roots.

Solution. Recall from class that for p24, we have that

κr =
xi−1
j ai

p′(xj)

APPENDIX B. 8610 EXERCISES 73

Figure B.2: Root Relative Errors

which simplifies to
xk−1
k ak
p′(xk) for this problem since i = j = k. The computed results are summarized

in Table B.1. We can clearly see that k = 16 is the most sensitive root to perturbations of the

Root Relative Condition Number

k = 16 −2.12e16
k = 17 7.88e14
k = 18 −1.77e15
k = 19 −1.59e15
k = 20 −2.31e15

Table B.1: Relative Conditioning of Roots

corresponding coefficient. Using MATLAB to compute the roots, we see that numerous roots had
a relative error of over 0.1. Because of the large relative condition number at these roots, this is
already terrible. Figure B.2 shows the relative error of the computed roots.

4. Question from Dr. Xue. Let x0, . . . , xn be n + 1 equidistant points on [−1, 1] where x0 =
−1, xn = 1. Use MATLAB’s vander to generate Vandermonde matrices for n = 9, 19, 29, 39. Let
x = [1, . . . , 1]T and b = Ax. Pretend that we do not know x and use numerical algorithms to solve
for x. Let x̂ be the computed solution. Compute the relative forward errors and the smallest relative
backward errors for GEPP, QR factorization, Cramer’s Rule, A−1b, and GE without pivoting.
Comment on the forward/backward stability of these methods.

Solution. Table B.2 presents the numerical results for n = 39. We immediately see that both
GEPP and QR factorization appear to be numerically backward stable. The final three algorithms
cannot make such claim, but two of them, A−1b and Cramer’s Rule appear to at least be forward
stable, i.e. they produce forward errors similar to the forward errors of a backwards stable algo-
rithm. However, for GE without pivoting, it is neither forward nor backward stable, for such a
large n. Admittedly, it is likely the large n that creates the most problems. The forward error for
n = 9 of GE without pivoting is on the order of 10−13. Full evaluations can be found in Figure
B.3.

5. Question from Dr. Xue. Though pivoting is needed for factorizing general matrices, it is not
needed for symmetric positive definite and diagonally dominant matrices.

APPENDIX B. 8610 EXERCISES 74

Algorithm Forward Error Backward Error

GEPP 4.1723 0.2113e− 16
QR Factorization 4.5289 0.0408e− 15
A−1b 4.7941 0.0065
Cramer’s Rule 2.3003 0.0784
GE without pivot 1.828e28 0.0134

Table B.2: Algorithm Stability

Figure B.3: Stability Graphs

(a) For a symmetric positive definite A, with the one-step Cholesky factorization

A =

[
a11 wT

w K

]
=

[√
a11 0
w√
a11

I

] [
1 0

0 K − wwT

a11

][√
a11

wT
√
a11

0 I

]
= RT1 A1R1

show that the submatrix K − wwT

a11
is symmetric positive definite. Consequently the factor-

ization can be completed without break-down. Then, show that ||R||2 = ||A||
1
2
2 , which means

the elements in R are uniformly bounded by that of ||A||. Explain why this observation leads
to the backward stability of Cholesky factorization.

Solution. Since det(RT1) = det(R1) =
√
a11 > 0, and all other leading principal minors

of R1, R
T
1 are positive (the submatrix is the identity in both cases), these matrices must

be invertible and symmetric positive definite. Thus, their inverses must also be SPD. So
A1 = R−T1 AR−1

1 is also positive definite since it is the product of 3 SPD matrices. Finally,

because K − wwT

a11
is a principal minor of A1 which itself is SPD, it must also be SPD. Recall

from class that the magnitude of ρn controls the backward stability of an LU factorization
algorithm.

To see the equivalence of norms, let R = UΣV T be a singular value decomposition of R.
We can then compute

A = RTR = V Σ2V T

which is a singular value decomposition of A. From here we see that the singular values of
R are the square root of the corresponding singular values in A. Because both R and A are
symmetric, this is also true for the eigenvalues. Thus,

||R||2 = ρ(R) = ρ(A)
1
2 = ||A||

1
2
2

APPENDIX B. 8610 EXERCISES 75

Because the elements of R are uniformly bounded by ||A||, the growth factor is incredibly well
behaved for Cholesky factorization and it is consequently backwards stable.

(b) Suppose that A =

[
α wT

v C

]
is column diagonally dominant, with one step LU factorization

A =

[
1 0
v
α I

] [
1 0
0 C − 1

αvw
T

] [
α wT

0 I

]
. Show that the submatrix C − 1

αvw
T is also column

diagonally dominant, and no pivoting is needed.

Solution. For brevity, let D = C− 1
αvw

T and consequently, A =

[
α wT

v D + vwT

α

]
. Suppose for

the sake of contradiction that there exists some column j such that Djj <

n∑
i=1,i6=j

Dij , i.e. D is

not strictly diagonally dominant. Note that since A is column diagonally dominant, we have∑n
i=1 vi < α. We may rearrange this to obtain

1

α

 ∑
i=1,i6=j

viwj + vjwj

 < wj . Combining the

previous two inequalities gives us

Djj +
vjwj
α

<

n∑
i=1,i6=j

(
Dij +

viwj
α

)
+ wj

which is precisely the condition that column j of A is not strictly diagonally dominant, a
contradiction.

(c) Show that worst-case growth factor ρn = 2n−1 for GEPP. However, we construct matrices
with random elements, each are independent samples from the normal distribution of means
0 and standard deviation 1√

n
. Let n = 32, 64, . . . , 2048, and for each n, repeat the experiment

5000 times. Find the percent of experiments when ρn >
√
n. Comment on the chance of

having a large ρn.

Solution. It is clear from the results in Table B.3 that the likelihood of having a troublesome
growth factor is very small. Of the results tallied, they only indicate an instance of ρn >√
n, which itself is not incredibly intimidating. However, it is important to note that many

applications in practice are not on matrices sampled from a normal distribution. Often times,
systems are banded or at least sparse. If I had written an LU factorization algorithm that took
advantage of these special structures, I would test this as well, but I have not. Nonetheless,
GEPP is most likely a very backward stable algorithm in practice.

n Bad Growth Factor Count

32 15
64 13
128 19
256 16
512 9
1024 8
2048 5

Table B.3: Large Growth Factor Frequencies

6. Question from Dr. Xue. Consider the eigenvalue problem Av = λv. Let (λ̂, v̂) be a computed
eigenpair, which is assumed to be the exact eigenpair of a perturbed matrix A+∆A. Show that the

minimum 2-norm of all ∆A is
||Av̂−λ̂v̂||

2

||v̂||2
and find a particular ∆A whose 2-norm is the minimum.

Solution. Consider the perturbed equation (A+ ∆A)v̂ = λ̂v̂. Rearranging gives ∆Av̂ = λ̂v̂−Av̂.

APPENDIX B. 8610 EXERCISES 76

It follows that
∣∣∣∣∣∣Av̂ − λ̂v̂∣∣∣∣∣∣

2
= ||∆Av̂||2 ≤ ||∆A||2 ||v̂||2. Thus,∣∣∣∣∣∣Av̂ − λ̂v̂∣∣∣∣∣∣

2

||v̂||2
≤ ||∆A||2

To find a matrix satisfying this inequality, we will need a lemma. Let u, v ∈ Rn. Then
∣∣∣∣uvT ∣∣∣∣

2
=

||u||2 ||v||2.

Proof. Let u, v ∈ Rn. To prove the lemma, first set ũ, ṽ to be unit vectors in the directions of
u, v respectively, i.e. ũ ||u||2 = u, ṽ ||v||2 = v. Let U, V to be orthonormal basis extensions of
u, v and A = uvT . Denote E to be the zero n × n matrix with a 1 in the top left entry. Then
ũṽT = Ã = UEV T is a singular value decomposition of Â. Scaling up to A, we see that ||u||2 ||v||2
is the only nontrivial singular value of A. Thus, it must be the 2-norm.

Now set r = λ̂v̂ − Av̂. Then consider ∆A = rv̂T

v̂T v̂
. From the lemma we have

∣∣∣∣rv̂T ∣∣∣∣
2

= ||r||2 ||v̂||2.
Consequently, it follows that

||∆A||2 =
||r||2 ||v̂||2
||v̂||22

=

∣∣∣∣∣∣Av̂ − λ̂v̂∣∣∣∣∣∣
2
||v̂||2

||v̂||22
=

∣∣∣∣∣∣Av̂ − λ̂v̂∣∣∣∣∣∣
2

||v̂||2

Thus we have found a matrix satisfying the minimum 2-norm.

3 QR and Linear Least Squares

1. Trefethen and Bau Problem 6.1. Prove that I − 2P is unitary for an orthogonal projector P
and provide a geometric interpretation.

Solution. Note that

(I − 2P)(I − 2P)∗ = I − 2P ∗ − 2P + 4PP ∗ = I − 4P + 4P = I.

The other direction holds similarly. Thus, I − 2P is unitary. Recall that I −P is a projection onto
the the null space of P . Then I − 2P = I − P − P is simply moving in this direction, twice. This
amounts to a reflection across the null space of P . Reflections preserve distance and are therefore
unitary.

2. Trefethen and Bau Problem 6.2 Let E be the m×m matrix such that E = (I + F)/2 where
F is the m×m matrix that flips (x1, . . . , xm) to (xm, . . . , x1). Classify E as a projector.

Solution. It is easy to argue F 2 = I. Then

E2 =
1

4
(I + F)(I + F) =

1

4
(I + 2F + F 2) =

1

2
(I + F) = E

So E is a projector. Both I and F are clearly symmetric, so E is an orthogonal projector.

3. Trefethen and Bau Problem 6.3. Given A ∈ Cm×n with m ≥ n, show that A∗A is nonsingular
if and only if A has full rank.

Solution. Suppose A is not full rank. Then there exists nonzero x such that Ax = 0 and thus
A∗Ax = A∗0 = 0. Now let A∗A have non-full rank. Then there exists nonzero x such that
A∗Ax = 0. Suppose that A were full rank. Then so too is A∗. Thus, A∗Ax = 0 implies Ax = 0.
But A was assumed to have full rank so x 6= 0. This is a contradiction and consequently A is not
full rank.

4. Trefethen and Bau Problem 6.5. Let P ∈ Cm×m be a nonzero projector. Show that ||P ||2 ≥ 1
with equality if and only if P is an orthogonal projector.

APPENDIX B. 8610 EXERCISES 77

Solution. From properties of projectors, we see that ||P || =
∣∣∣∣P 2

∣∣∣∣ ≤ ||P ||2 and thus ||P || ≥ 1.
The singular values of P are simply the eigenvalues of P ∗P . For an orthogonal projector, P ∗P =
P 2 = P . Since Px = λx =⇒ Px = λPx, it is clear that any eigenvalue of P = P ∗P must have
modulus 1. Thus, ||P ||2 = 1.

5. Trefethen and Bau Problem 7.2. Let A ∈ Rm×n be a matrix with the property that columns
1, 3, 5, 7, . . . are orthogonal to columns 2, 4, 6, In a reduced QR factorization, what special
structure does R possess?

Solution. The columns of Q satisfy qi ∈ span({ai}) for i = j mod 2, i ≤ j. Consequently,
rij = 〈qi, aj〉 = 0 whenever i 6= j mod 2. To see this, note that q1 ∈ span(a1) by construction and
q2 ∝ a2 − r12q1 = a2. Now assume the statement holds for all t ≤ 2i. Then

q2i+1 ∝ a2i+1 −
i−1∑
j=0

r2j+1,2i+1q2j+1 −
i−1∑
j=0

r2j,2i+1q2j = a2i+1 −
i−1∑
j=0

r2j+1,2i+1q2j+1

from the induction hypothesis since the second sum is all zeros. The case for q2i+2 can be done
similarly. Thus, the statement holds for all t ≤ n by induction.

6. Trefethen and Bau Problem 7.5. LetA ∈ Rm×n and letA = QR be a reduced QR factorization.
Suppose R has k nonzero diagonal entries for 0 ≤ k ≤ n. What does this imply about the rank of
A?

Solution. For any j such that rjj = 0, it must be that aj −
∑j−1
i=1 rijqi = 0, that is, aj ∈

span(qi, . . . , qj−1) = span(ai, . . . , aj−1). Thus, rank(A) ≤ k. To see that rank(A) ≥ k, note that
since Q is unitary (invertible), rank(A) = rank(R). Since for any j such that rjj 6= 0 Rej are
k linearly independent vectors in the column space of R, we have that rank(A) = rank(R) ≥ k.
Thus, rank(A) = k.

7. Trefethen and Bau Problem 10.1. Determine the eigenvalues, determinant, and singular values
of a Householder reflector. For the eigenvalues, give both a geometric and algebraic proof.

Solution. Let us begin with a geometric interpretation of the Householder transformation. We
would like to find a transformation that maps x to ||x1|| e1. Consider the vector v = ||x1|| e1−x. The

projection of x onto the hyperplane orthogonal to the vector v is proj(x) = x− v
(
vT x
vT v

)
. However,

if we are to project to ||x1|| e1, we need to go twice this distance. Thus, our Householder reflection

is characterized by x−2v
(
vT x
vT v

)
and we say that our Householder reflect H = (I− vvT

vT v
). This geo-

metric interpretation immediately motivates many properties such as symmetry and orthogonality.
One can also see eigenvalues from this interpretation. Since our projection is a reflection across a
hyperplane (of dimension m− 1), all but 1 direction is fixed. That is, λi = 1 for λ = 1, . . . ,m− 1
and λm = −1.

For the algebraic solutions, note that if y ⊥ v. Then Hy = y − 2 v
T y
vT v

= y − 2 · 0 = y. Since

dim span(y) = 1, dim span(y)⊥ = m − 1. Thus, λ = 1 is an eigenvalue with multiplicity m − 1.
Noting that Hv = −v shows that the remaining eigenvalue is −1. The determinant is simply the
product of all of these eigenvalues. Thus, detH = 1m−1 ·−1 = −1. Since H is symmetric (because
vvT is symmetric), we know that the singular values are the absolute value of the eigenvalues. That
is, σi = 1 for all i = 1, . . . ,m.

8. Trefethen and Bau Problem 10.4. Consider the orthogonal matrices

F =

[
− cos θ sin θ
sin θ cos θ

]
, J =

[
cos θ sin θ
− sin θ cos θ

]
Describe what geometric effects left-multiplication by F and J have on the plane R2.

APPENDIX B. 8610 EXERCISES 78

Solution. For F , since tr(F) = 0 and det(F) = −1, we can conclude that λ1,2 = ±1. Thus, F is
an orthogonal matrix with eigenvalues ±1. Hence, F is a reflection. For J , notice that detJ = 1
and consider vectors x and Jx. Let t be the angle between these two vectors. We can compute
that

cos t =
〈x, Jx〉

||x||2 ||Jx||2
=
〈x, Jx〉
||x||22

since J is unitary. Evaluating the numerator, we continue with

cos t =
cos θ(x2

1 + x2
2)

||x||22
= cos θ.

Hence, t = θ. Thus, J has the effect of a rotation on a vector in R2. Plugging in θ = π/2 and

x =

[
0
1

]
, we see that this is a clockwise rotation.

9. Question from Dr. Xue. Consider the Givens rotation G =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. Give a geo-

metric interpretation of the action of G on a vector in R2. Determine both the eigenvalues and the
singular values.

Solution. Recall that the matrix G =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
rotates a vector in R2 clockwise by an

angle of θ. If θ is the angle between a point x and the x-axis, then Gx rotates x to the x-axis. We
accomplish this by setting θ to be the angle such that cos(θ) = x1√

x2
1+x2

2

and sin(θ) = x2√
x2
1+x2

2

Algebraically, we can compute the eigenvalues as the roots of the equation

cos2(θ) + λ2 − 2λ cos(θ) + sin2(θ) = 0

Letting x = (a, b)T , this becomes

1 + λ− 2λa√
a2 + b2

= 0

after substituting θ. By the quadratic formula, we obtain

λ1,2 =

2a√
a2+b2

±
√

2a√
a2+b2

− 4

2
=

2a√
a2 + b2

± 2b√
a2 + b2

i = cos(θ)± i sin(θ)

as our eigenvalues. The singular values can be found through construction of a singular value
decomposition. First note that for any α, β, the vectors u = (−α, β)T , v = (β, α)T are orthogonal
since [

−α β
] [β
α

]
= −αβ + βα = 0

Thus, [
− cos(θ) sin(θ)
sin(θ) cos(θ)

] [
−1 0
0 1

]
I2 =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
= G

is a valid SVD for G. From this decomposition, we immediately read off σ1,2 = ±1.

10. Trefethen and Bau Problem 11.1 Suppose A ∈ Rm×n matrix has the form

A =

[
A1

A2

]
where A1 ∈ Rn×n is nonsingular. Show that

∣∣∣∣A†∣∣∣∣
2
≤
∣∣∣∣A−1

1

∣∣∣∣
2
.

APPENDIX B. 8610 EXERCISES 79

Solution. Let A = UΣV T be a reduced SVD of A. Then

A† = (ATA)−1AT = V Σ−2V TV ΣUT = V Σ−1UT

is a valid SVD for A† and hence
∣∣∣∣A†∣∣∣∣

2
= 1/σ(A) where σ(X) represents the smallest singular

value of a matrix X. Similarly, it can be shown that
∣∣∣∣A−1

1

∣∣∣∣
2

= 1/σ(A1). Thus, it suffices to show
that σ(A1) ≤ σ(A). To see this, compute

σ(A) = min
||x||=1

||Ax|| = min
||x||=1

∣∣∣∣∣∣∣∣(A1x
A2x

)∣∣∣∣∣∣∣∣ ≥ min
||x||=1

||A1x|| = σ(A1)

and we conclude that
∣∣∣∣A†∣∣∣∣

2
≤
∣∣∣∣A−1

1

∣∣∣∣
2
.

11. Trefethen and Bau Problem 11.3. Take m = 50, n = 12. Using MATLAB’s linspace, define
t to be the m vector corresponding to linearly spaced grid points from 0 to 1. Using MATLAB’s
vander and fliplr, define A to be the m× n matrix associated with the least squares fitting on this
grid by a polynomial of degree n − 1. Take b to be the function cos(4t) evaluated on the grid.
What do you observe from the 6 methods?

(a) Normal equations (using MATLAB’s \)
(b) QR factorization by MGS

(c) QR factorization by Householder transformations

(d) QR factorization computed by MATLAB’s qr

(e) x = A\b in MATLAB

(f) SVD, using MATLABs svd

Solution. The results are summarized in Table B.4. To generate the table, I assumed that the
solution x = A\b computed using MATLAB’s backslash operator was the true solution. Each vector
of coefficients were then compared to the solution generated with the backslash, and then normed.
The results are a bit unsurprising. The normal equations and MGS look to be numerically unstable
while Householder, MATLAB QR factorization, and MATLAB SVD all seem to be relatively close
to the true solution. I am unsure as to how we only managed to get the square root of machine
precision, but it is likely due to the fact that x = A\b is, in fact, not the true solution.

Algorithm Norm of Errors

Normal Eq 1.06e− 1
MGS 1.526e− 1
Householder 2.85e− 8
MATLAB QR 3.31e− 8
MATLAB SVD 3.20e− 8

Table B.4: Norm of Coefficient Errors

12. Trefethen and Bau Problem 11.2. How closely can f(x) = 1
x be measured in the L2 norm by

linear combinations of ex, sin(x), and Γ(x) over [1, 2]?

Solution. We wish to project f(x) to some space P spanned by ex, sin(x), and Γ(X). For an
orthonormal basis {φi(x)}ni=1, the solution to ming∈P ||f − g||∗ is

g(x) =

n∑
i=1

〈φi(x), f(x)〉φi(x)

Hence, we only need to find an orthonormal basis for P with respect to the L2 norm over [1, 2]. By
applying Gram-Schmidt to our functions, we can construct an orthonormal basis {φi(x)}ni=1 of P .
I have left the details in the code, but provided Figure B.4 to show the results. The results look
strong to the naked eye, but has an error with norm around 0.05.

Trevor Squires

Figure B.4: Approximations of f(x)

After being reminded that we can tackle this problem via LSQ, I tried a different approach. Recall
that can write our approximation problem as

[
f1(x) f2(x) f3(x)

] αβ
γ

 = f(x)

where fi(x) are our basis functions. Naively applying the normal equation technique to this LSQ

problem gives us the equation ATAx = AT b where [ATA]ij = 〈fi, fj〉 =

∫ 1

0

fi(x)fj(x)dx and

[AT b]i = 〈fi, f〉 =

∫ 1

0

fi(x)f(x)dx. Using MATLAB’s backslash operator on this linear system

gives the coefficients x = [−0.1078, 0.0092, 1.2872]. Since cond(ATA) ≈ 104, we can expect these
coefficients to have around 16− 4 = 12 digits of accuracy, which is enough to provide us with the
nice approximation shown in the right pane of Figure B.4.

80

	I List of Topics
	Math 8600
	Math 8610

	II 8600 Notes
	Scientific Computing Overview
	Error
	Solving Problems and Algorithm Properties

	Roundoff Errors
	Representation
	Consequences of Finite Number System

	Roots to Nonlinear Equations
	Bisection Method
	Fixed Point Iteration
	Newton's Method
	Secant Method

	Direct Methods of Solving Linear Systems
	Gaussian Elimination
	Forward/Backward Substitution
	LU Factorization
	Pivoting Strategies
	Condition Number

	Least Squares Problem
	An Analytical Solution
	Naive Numerical Solution
	Other Numerical Methods

	Polynomial interpolation
	Monomial interpolation
	Lagrange Interpolation
	Newton Polynomial Interpretation
	Error in Polynomial Interpolation

	Piecewise Polynomial Interpolation
	Broken line and piecewise Hermite interpolation
	Piecewise cubic interpolation
	Cubic Spline Interpolation

	Numerical Differentiation
	Taylor Series Approximations
	Richardson Extrapolation
	Lagrange Polynomial Approximations

	Numerical Integration
	Basic Quadrature Rules
	Quadrature Error
	Composite Numerical Integration
	Gaussian Quadratures
	Adaptive Quadrature
	Romberg Integration

	Differential Equations
	Euler Methods
	Preliminaries
	Method Errors
	Stability

	Runge-Kutta Methods

	III 8610 Notes
	Conditioning and Stability
	Conditioning of a Problem
	Conditioning of a System of Equations
	Conditioning of Eigenvalues of Matrices
	Conditioning of Roots of a Polynomial
	Algorithm Stability
	Stability of Linear Solvers
	Conditioning of GE/LU factorization

	QR Factorization
	Properties of QR
	QR Factorization via Gram-Schmidt
	QR Factorization via Orthogonal Transformations
	QR Factorization via Given's Rotation
	Given's Rotation Computational Cost

	Singular Value Decomposition
	SVD Review
	Low Rank Approximations

	Computing an SVD
	Naive Idea
	Golub-Kahan Bidiagonalization

	IV Exercises
	8600 Exercises
	Scientific Computing Fundamentals
	Numerical Algorithms
	Roundoff Errors
	Nonlinear Equations of One Variable

	Numerical Systems Analysis
	Direct Methods for Linear Systems
	Linear Least Squares Problems

	Numerical Approximation
	Polynomial Approximation
	Piecewise Polynomial Interpolation
	Numerical Differentiation
	Numerical Integration

	8610 Exercises
	Numerical Linear Algebra Fundamentals
	Conditioning and Stability
	QR and Linear Least Squares

