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1 Introduction

If you don’t know by now, let me be the first to tell you that I, Trevor Squires, am a huge Clemson football
fan. So much in fact, that I have joined numerous Facebook fan groups who see the world through equally
orange-tinted glasses. And although I am a sucker for blindly advocating for Clemson in casual discussions, when
it comes down to it, I am also a big fan of football in general and I try to be as objective as I possibly can for
someone who spent 10 years at Clemson University. My Facebook groupmates, however, have no such interest
in being impartial. They subscribe to whatever fallacies of logic will make our tigers look as good as possible on
paper.

One common logical progression among all naive fanbases is the idea that if team A beats team B, then team
A is just better than team B. No matter what. And although this seems obvious to the less-sports inclined
faction of the world, any avid sports fan will tell you about plenty of times where the ”better team” lost. In the
college football world, many fans will remember the 2011 season where LSU beat Alabama in the ” Game of the
Century” on November 5th. After the loss, Alabama dropped from first place in the BCS rankings (those were
the days) to third. Eventually, Alabama reclaimed a spot in the top two and was selected to play LSU (who was
obviously number 1 at the time) in the national championship game. The same Alabama team that failed to
win its conference, but also failed to win its own division was deemed at having a realistic shot at being the best
team in the country. And after all that controversy, Alabama went on to beat LSU 21-0, claiming the college
football title. So much for letting wins and losses dictate relative rankings.

Even then, college football rankings were a combination of many factors (though nowadays which factors
to include depend on what statistics the media darlings happen to dominate). Yet, that doesn’t stop us fans
from constructing overwhelming evidence that our team is better, and no statistic makes that clearer than team
A is better than team B if team B loses to team A. In this document, we take this idea to the next level by
constructing a complete ranking of all college football teams using only this completely rational and perfectly
valid rule: teams that win games must not be ranked lower than teams that they defeatecﬂ Note that all of the
following results are calculated using results up through week 6 of the 2024 college football season.

2 Mathematical Breakdown

If you were to choose to apply this ranking methodology to, say, your kid’s soccer league, you probably wouldn’t
find it quite difficult. Undoubtedly, one team fielding the coaches kid is probably beating everyone, whereas one
team who’s very excited for half time oranges is propping everyone else’s stats. There’s probably some obvious
ordering of all the teams in the middle. In other words, it would not be hard to write down and even verify a
ranking among the teams that satisfies our golden rule. However, if you try to do that with 125+ college football
teams, each with X different game results under their belt, you will probably give up before you find any success.
With thousands of games a season, it’s easy to prefer to be watching football than analyzing the results. Due to
this difficulty in scale, it is important that we model our problem mathematically and leverage existing tools to
speed up the process.

Let us begin by restating our problem: we would like to devise a method of computing a comparison between
two teams in which team A is better than team B if team A has defeated team B. Consequently, it follows that
if team B has defeated team C, then team B must be better than team C. Thus, if we were to further compare
team A and team C, it must be that team A is better than team C, else the corresponding relationships with
team B will have been violated.

lwith the eventual goal of proving that Clemson is better than Michigan



In mathematics, the term to describe what we are looking for is called a partial ordering. A partial ordering
on a set is an arrangement such for particular pairs of elements, one precedes the other. Here, we are using the
term partial because not every elements can be related. This is opposed to a total ordering in which every pair
of elements of the set are comparable. Indeed, it’s entirely possible that some college football team not only
does not play some other team, but the two don’t even share common opponents. In this case, it’s impossible to
compare the two teams on wins and losses alone. Now, Vegas will certainly compare the two teams for you using
some other approach than what we are attempting, but for now, that’s out of our wheelhouse.

Partial orders have other properties that are natural for our problem (some more obvious than others). For
any three teams a, b, and c,

o (reflexivity): a is no worse than a
e (antisymmetry): if a is no worse than b and b is no worse than a, then a and b are ”equivalent” in strength
e (transitivity): if a is no worse than b and b is no worse than ¢, then a is no worse than ¢

Each of these properties is again very desirable in our hypothetical obsession in determining how to rank college
football teams in the most sane way possible. Properly framing our problem as a search for a partial ordering
one is the first step in being able to systematically achieve our goal.

3 Leveraging Graph Theory

Now that we have a proper goal in mind, how can we go about computing our partial ordering? To get started, we
need to choose a model which represent the information that we have available to us: game results. Surprisingly
(or maybe not depending on how far you paid attention in math), graphs do a great job at conveying relationships
between objects. More formally, a graph G is a mathematical structure which contains vertices (or nodes) that
are connected by edges (or arcs). We can use graphs to easily summarize a set of game results for a fixed set of
teams as follows:

e Associate a node of the graph with each team in the league

e Associate a each completed game result with an edge of the graph connecting the home team to the away
team. The edge should be pointing from the losing team to the winning team in order to denote the result
of the game

The second bullet above means that we will be dealing with directed graphs, i.e. graphs whose edges have
directions associated with them. In a directed graph, we usually denote an edge (i, j) if it connects nodes ¢ and
4 by moving from node i to node j.

Let’s look at an example, suppose a kid’s soccer league has four teams where team 1 never wins, team 4 never
loses, and team 2 has lost to team 3. We can construct the graph in Figure [I] to summarize this information
visually. While a visual representation of our results is nice, modeling our game results as a graph has a plethora
of other utility. Many of the concepts we have previously discussed have direct graphical counterparts.

Paths

A (directed) path pgp in a (directed) graph is defined as a sequence of edges {(¢,7)} which join node a to node
b. Paths between any two nodes need not exists, however. In Figure |1} there is no sequence of edges we could
ever take to get us from node 2 to node 1. Now let’s look a little bit closer at how we can interpret paths in our
frameworks. Recall that our graphs have the special property that the existence of an edge (i,7) implies that
team j is better than team ¢. Thus, a sequence of edges from i to j implies that there exist teams that are better
than ¢, but worse than j. By transitivity, this means that team j is at least as good as every team along the
path, including team 4. Therefore, the existence of a path from ¢ to j indicates that team j is no worse than
team i, as it consistently outperforms or is comparable to all teams that connect them. This property allows us
to use directed paths as a way of reasoning about relative team strength across multiple matchups. That is, even
though there may not be an edge directly connecting team ¢ to team j, if there exists a path between them, then
we can conclude from transitivity that 7 must be no worse than i.

We can see this path property play itself out in Figure[I} Team 4 has no direct relationship with team 1 since
the two have not played each other, but because a path exists from node 1 to node 4, (1,2), (2,4), we know that
team 4 is no worse than team 1. Realistically, we know this must be the case since team 2 beat team 1 and team
4 beat team 2. By transitivity, we have conclude the same result as our graphical approach.



Figure 1: Simple Soccer Graph

Cycles

A cycle ¢, in a directed graph is defined as a sequence of edges {(4,7)} which start at node a and end at node
a. Building on our discussion of paths, we can now consider what happens if there is a cycle that includes both
nodes a and b. Note that a cycle involving these two nodes can be decomposed into a path from a to b combined
with a path from b to a. Given that a path from a to b implies team b is no worse than team a, and a path from b
to a implies team a is no worse than team b, this creates a scenario where each team is deemed at least as strong
as the other. In light of the antisymmetry property of a partial order, which states that if a < b and b < a, then
a = b, we are forced to conclude that the two teams must be "equivalent” in strength. The existence of such
a cycle therefore indicates that neither team can be strictly better than the other, establishing an equivalence
between them in terms of performance.

Unfortunately, there are no such cycles in our simple soccer example. However, consider a second example in
which we add an edge from node 3 to node 1. In some twisted rematch, node 1 actually wins a match against
team 3 and the resulting graph is shown in Figure Now, there are much more paths to contend with. We
can now find a path between any two of the nodes 1,2, or 3 implying that all three teams are equal in strength.
Team 4 has still not been defeated, so they sit atop the rankings, but the remaining teams are in a three way tie
due to the cycle {(1,2),(2,3),(3,1)} that contains each node.

Strongly Connected Components, Condensation Graphs, and Topological Orderings

The last graphical concept that we will need to leverage to achieve our somewhat distant goal at this point is the
idea of a strongly connected component (SCC). A strongly connected component in a directed graph is a maximal
subgraph where every node is reachable from every other node in that subgraph. In our framework, this means
that within an SCC, any two teams are "equivalent” in strength, since there are paths connecting them in both
directions. By grouping all such equivalent teams into a single SCC, we can simplify the graph significantly. In
the cases of cycles, it is no longer important for us to consider all relationships between the cycle teams and other
teams. Instead, we can, we can treat each SCC as a single unit, which allows us to focus only on how these units
(or groups of teams) relate to each other. This leads us to the condensation (or condensed) graph, a simplified,
acyclic graph where each node represents a strongly connected component, and the edges between nodes show



Figure 2: Simple Cycle Soccer Graph

the hierarchical relationships between these groups. Since there are no cycles in a condensation graph (proof left
up to the reader), this condensation graph will serve as a much clearer and more efficient way to discuss which
teams are definitively better than others, avoiding the need to untangle cycles or equivalence relations between
teams.

As for our example, the strongly connected components of our graph are (1,2,3) and (4) indicating that
there is a cycle containing the first three teams, and a trivial cycle containing the fourth team. If we denote the
nontrivial SCC as an arbitrary team 0, our graph simplifies greatly into Figure [3]

The simplification of the condensation graph plays a major role in why modeling our game results as a graph
makes the most sense. A quick look at Figure [3] tells us everything we need to know about the strength of the
soccer teams: all teams in the SCC represented by node 0 are equivalent, all teams in the SCC represented by
node 4 are equivalent, and all teams in node 0 are all worse than teams in node 4.

To take this one step further, we can apply a topological ordering to the condensation graph. In this case, a
topological ordering is simply an extension of the aforementioned partial ordering, except we fill in the blanks
between two uncomparable teams in any way that doesn’t violate the comparable teams. For example, if team
A has no relation (direct or indirect) to team B, then ranking team A or team B first would be acceptable. This
topological ordering of the condensation graph allows us to take our partial ordering that is generated from the
game results and turn it into an actual ranking which is a nice addition to our objectives.

4 Applications to College Football

With our knowledge of graph theory refreshed, let us summarize our findings of what is possible with a directed
graph of the game results

1. To compare team A to team B, search for the existence of a path from node A to node B and vice versa.

e if a path exists from node A to node B, then team A is no worse than team B
e if a path exists from node B to node A, then team B is no worse than team A

e if both path exists, then team A and team B are equivalent in strength



Figure 3: Condensation Soccer Graph

2. To generate our desired rankings, construct the condensation graph and compute a topological ordering
of its strongly connected components. This forms an unambiguous ranking of all teams involved, though
many such valid orderings may exist.

Although it seems as though we’ve simply replaced one goal with another, by utilizing a graph representation, we
can take advantage of longstanding, efficient algorithms that accomplish our graph-related objectives extremely
quickly. Thus, we can get our comparisons or rankings equally as quickly. I’ve done the ”challenging” portion
of this implementation in only a few lines of code. For example, here’s how easy it is to compare two teams by
leveraging our graphical representation and NetworkX’s graph algorithm python package after some initial set

up.

def compare_teams(self, teaml, team2):
two_team_cycles = [cycle for cycle in self.cycles if teaml in cycle and team2 in cycle]
pathl = get_shortest_path(self.G, teaml, team2)
path2 = get_shortest_path(self.G, team2, teaml)

if len(two_team_cycles) > O:
print (f"The two teams are equivalent because of the cycle {two_team_cycles[0]}")
return two_team_cycles

elif pathl:
print (f"{team2} is better than {teaml} because of the path {pathi}")
return pathl

elif path2:
print(f"{teaml} is better than {team2} because of the path {path2}")
return path2

else:
print (°The two teams are incomparable’)
return None

The full code can be found on my github under the evaluate_teams.py file. But that’s enough of experimenta-


https://github.com/trevorsquires/cfb_predictions

tion, let’s actually dive into what we really wanted to see - why Clemson was so much better than every other
team in college football.

Individual Rankings and The Circle of Suck

Before looking at the top of the rankings, let’s take some time to do some 1 on 1 comparisons to sanity check
our work. Specifically, we’ll use the compare teams function shown above to do a few quick comparisons

1. Oregon vs LSU: Oregon is better because of the path LSU-USC-Minnesota-Iowa-Ohio State-Oregon
2. Boise State vs Iowa: the two teams are uncomparable
3. Clemson vs Florida State: Clemson is better because of the path Florida State-Clemson

4. Alabama vs NC State: the two teams are equivalent due to the cycle NIU-NC State-Clemson-Georgia-
Alabama-Vandy-Missouri-Texas A&M-ND

5. Clemson vs Georgia: the two teams are equivalent due to the cycle NIU-NC State-Clemson-Georgia-
Alabama-Vandy-Missouri-Texas A&M-ND

6. Clemson vs LSU: the two teams are equivalent due to the cycle South Carolina-LSU-USC-Minnesota-
North Carolina-Georgia Tech-Syracuse-Stanford-Clemson-Georgia-Alabama-Vanderbilt-Georgia State-Old
Dominion

7. Clemson vs Michigan: the two teams are equivalent due to the cycle South Alabama-Arkansas State-
Michigan-Washington-Rutgers-Wisconsin-USC-Minnesota-North Carolina-Georgia Tech-Syracuse-Stanford-
Clemson-Georgia-Alabama-Vanderbilt-Georgia State-Old Dominion-East Carolina-App State

An interested reader might notice that a lot of the same teams are appearing in these paths/cycles. Just from
these quick comparisons alone, one might be included to believe that there are a lot of equivalent teams. Indeed,
there currently exists a 58 team strongly connected component that encompasses many teams from the ACC and
SEC such as Alabama, Clemson, Georgia, LSU, Georgia Tech, Tennessee, and Notre Dame and can be found
in the eventual rankings below. The college football community has collectively decided to refer to these super
cycles as the ”circle of suck”. Indeed, the existence of such circles imply that powerhouses such as Rutgers are
somehow equivalent to much smaller schools such as Georgia. No team in the aforementioned circle of suck can
possibly be better than everyone else since they all exist in a cycle together. Thus, if one team is viewed as weak,
then all teams must be equally poor. Hence, the circle of suck.

But how did such a cycle come to exist? Surely 1 loss teams like Georgia and Clemson haven’t had any
embarrassing performances that would subject them to the circle. The key to the expansion of the circle occurred
on October 5th when Alabama fell to the Vanderbilt Commodores for the first time in 40 years. Because Vandy
has lost to some certified "happy to be here” schools, those losses extend to Alabama. And because Alabama
has defeated so many quality teams, Vandy’s losses extend even further. The net effect is that a massive amount
of teams are forced to join the circle simply by losing to teams such as SEC juggernauts Alabama and Georgia.

The qualifications to join the circle of suck are as follows; one must both defeat a team in the circle and lose
to a (not necessarily the same) team in the circle. As time goes on and the circle grows, this application process
becomes easier and easier. In other words, as we add more and more edges into our graph of game results, the
circle of suck eventually comes for us all. Nonetheless, we can still use these tools to achieve our original goal of
constructing a topological ordering of the top 100 college football teams where each team never ranked below a
team that it defeated. Although it may not be the most insightful list, it is perfectly fair and balanced among
the eyes of those who don’t have anything better to do with their time. Any and all complaints can be directed
towards Kalen Deboer.



Oregon

Boise State
Washington State
BYU

Texas Tech
Kansas State
Penn State

Iowa State
Pittsburgh

: Arizona State
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: Arizona

12: Texas

13: Illinois

14: West Virginia
15: Utah

16: UL Monroe

17: Ohio State

18: Nebraska

19: Oklahoma State

20: Liberty

21: North Texas
22: Miami

23: Indiana

24: SMU

25: James Madison
26: Iowa

27: Cincinnati

28: Colorado

T29: Arkansas State, Stanford, Duke, Florida, Vanderbilt, NC State, TCU, Virginia, Georgia Tech,
Coastal Carolina, Rutgers, Wisconsin, Washington, Wake Forest, Louisville, Virginia Tech, Alabama,
Minnesota, Oklahoma, Michigan State, 0ld Dominion, Notre Dame, Marshall, Texas A&M, Ole Miss, Georgia,
Syracuse, Missouri, Charlotte, Georgia Southern, Houston, Arkansas, Northwestern, Louisiana, Ohio,
North Carolina, Tennessee, Maryland, Boston College, Buffalo, Texas State, Western Kentucky,

South Carolina, UCF, Kentucky, Clemson, UConn, Tulane, South Alabama, East Carolina, Northern Illinois,
App State, Georgia State, Michigan, UNLV, LSU, USC, Sam Houston

87: Toledo

88: Miami (OH)

89: Navy

90: Eastern Michigan
91: Memphis

92: Baylor

93: Jacksonville State
94: South Florida

95: Army

96: Florida State

97: Tarleton State

98: Southern Miss

99: Rice

100: California
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